Subject: Re: Non-monotonic Abscissa values for IDL function SPLINE_P Posted by Jeremy Bailin on Wed, 03 Jun 2009 18:31:01 GMT

View Forum Message <> Reply to Message

On Jun 3, 11:50 am, Xavier Ceamanos García <xavier.ceama...@gmail.com> wrote:

```
> Thank you so much Jeremy for the answer!
```

- > You are very right. I use splines to interpolate spectra. Then, the
- > main goal is to re-sample these spectra. Each value of a spectrum
- > corresponds to a given wavelength and in my case all points are
- > separated by a constant wavelength distance. Hence, it is crucial to
- > know which wavelengths corresponds to each point of the over-sampled
- > spectra. A good re-sampling is not possible otherwise.

>

>

- > Then, are you telling me that the number of points of the output
- > vector depends on the input data? That would mean that it would be
- > different for each spectrum interpolation...

>

- > So far, I am using the "SPLINE" function which produces a monotonic
- > output. In this case, it is easy to know the output wavelengths. It is
- > slower though...

>

- > I was just wandering if there is any way to get the same results I get
- > with SPLINE but using SPLINE_P...

>

> Thanks again!

> 、

> Xavi

Xavi.

Yes, the number of points in the output vector depends on the input data. For example:

```
IDL > x = findgen(20)
IDL > y = \sin(0.5^*x)
IDL> spline_p, x, y, xr, yr, interval=0.25
IDL> help, xr, yr
XR
            FLOAT
                      = Array[96]
YR
            FLOAT
                      = Array[96]
IDL > y = \sin(0.5*x) + x
IDL> spline_p, x, y, xr, yr, interval=0.25
IDL> help, xr, yr
XR
            FLOAT
                      = Array[120]
YR
            FLOAT
                      = Array[120]
```

So it will indeed be different for each spectrum. But your code should

be general enough to deal with that using n_elements(xr).

You might want to directly use SPL_INIT and SPL_INTERP... I suspect that may do what you want.

-Jeremy.