Subject: Re: HANDLE _FREE: when to use? is it necessary?
Posted by chase on Mon, 29 Jul 1996 07:00:00 GMT

View Forum Message <> Reply to Message

>>>> > "Stein" == Stein Vidar (UiO) <steinhh@cdsa2.nascom.nasa.gov> writes:
In article <4tb4cj$dq7@post.gsfc.nasa.gov> steinhh@cdsa2.nascom.nasa.gov (Stein Vidar (UiO))
writes:

Stein> In article <Pine.SOL.3.91.960722114953.671B-100000@mapper.mbt.washington.edu>,
Russ Welti <rwelti@mapper.mbt.washington.edu> writes:

Stein> |>

Stein> |> | was told once by RSI that if one is only about to reassign

Stein> |> a handle to point to a NEW piece of data (when it already

Stein> |> points to some other data) it is *not* necessary to call

Stein> |> HANDLE_FREE.

Stein> |>

This makes sense. In this context one can view handles like other IDL
variables. You do not need to free a variable's storage (e.g. by

using the temporary() command) every time you assign a hew value to
the variable. Similarly, the freeing of storage a handle points to
happens automatically. So handle_free is unnecessary when you only
want to change the handle's value.

Stein> When | started using handles for my own purposes, | did a (to0?)
Stein> quick check to se what effects handle_free could have. As it turns
Stein> out, the handle *numbers* appeared to be always increasing regardless
Stein> of handle_free calls, so | figured that RSI just hadn't gotten around
Stein> to actually freeing any handles.

The handles do appear to get freed (as revealed by handle_info() and
help,/handle). Just because the IDs returned by handle_create() are
not immediately reused does not mean the handle is not freed.

| use IDL version 4.0.1 on various UNIX systems (HPUX, IRIX, SunOS).
"help,/handle" gives some revealing statistics about handles. It

seems that IDL keeps track of handle references using a small hash
table (containing only 421 slots on our systems, but the table

probably only holds top level handles). Using your test program shows
that the table does not grow when using handle_free. However, the
hash table quickly becomes overwhelmed when handle_free is not used
and you create thousands of unique handles. When there are thousands
of active handles chaining is used off of each table slot making the
table very inefficient when you call handle_create (probably for all

other handle functions too).

Because top-level handles are like a global variable there is really
no reason to have thousands of them available simultaneously - it would

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4499&goto=6685#msg_6685
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6685
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

be like a C program with thousands of different variables which would
overwhelm most C compilers.

Stein> |> If freeing handles is really the answer, and is a required practise,

Stein> |> then why so few occurrences of its use in IDL programs?
Stein> |>

Use handle_free whenever you will no longer need the handle, e.g.,
when exiting the scope of the reference to the handle. Here is where
the real problem of using handles can get you. If you fail to free

the handle value storage and lose the handle ID then you end up with a

memory leak problem like those that plague C and C++ programmers.

can not know if you have references to a handle since handle IDs are
represented as ordinary long integers rather then by a unique type.
Thus freeing the memory must be done manually by the user.

Chris

Bldg 24-E188

The Applied Physics Laboratory
The Johns Hopkins University
Laurel, MD 20723-6099
(301)953-6000 x8529
chris.chase@jhuapl.edu

IDL

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

