
Subject: Re: Faster approach for total(data,dimension) possible?
Posted by JDS on Thu, 25 Jun 2009 15:22:11 GMT
View Forum Message <> Reply to Message

I agree with all the assessments thus far. These methods are within a
factor of 2 or 3 of the best IDL-native vectorized result (and very
likely a factor of 10-30 off the compiled C result). As for this
calculation taking "minutes", this sounds suspiciously like running
out of memory and hitting the disk. That would be unusual given the
~180MB data size here, but perhaps other processes or parts of the
routine are taxing memory, or it's a very old machine with <<1GB of
RAM. I'd look to this issue first. Here, no matter the algorithm, it
runs in a fraction of a second.

That concern aside, there is another approach -- one you will rarely
find me recommending. If you happen to know that null bands are going
to be found very rarely, a thinned WHERE loop can actually outperform
the native vector operation:

 s=size(data,/DIMENSIONS)
 chnk=s[0]*s[1]
 zeroes=lindgen(chnk)
 for i=0L,s[2]-1 do begin
 z=where(data[zeroes+i*chnk] eq 0.,cnt)
 if cnt eq 0 then break
 zeroes=zeroes[z]
 endfor

Here I'm operating on an array of the size mentioned above:

 data=randomu(sd,1536,231,126)
 data[where(data lt .9)]=0.

By tuning the ".9" factor, you can arrange for as many null bands as
you want.

When only a few bands are null in a given data cube, this is roughly
2.5x faster for me. When it's very rare to have *any* null bands,
this method can be *much* faster: 20-30x. The reason is clear: it
takes only a few iterations to prove the absence of nulls in that
case, and index thinning proceeds rapidly

But here's the catch (isn't there always a catch?). If null bands are
present at a frequency of even 1 in 200 or more, this loop method
becomes slower than TOTAL. In the worst case (all bands null), it's
about 6x slower (all on my dual-core machine, YMMV). So, as is usual
with these things, the answer to "which method is faster for my data"
is: "it depends on your data."

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6762
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67032#msg_67032
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67032
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

You might also notice this is a reasonable study case for the recently
debated issue of "when are for loops *not* evil". Since in each
iteration, a large number of elements are being compared, the looping
overhead is not severe. You'll also notice this illustrates the
method of "compute your own index vector and re-use." Had we used
IDL's native array range operator [x:y] or [*,*,z], this most
certainly would have spoiled the time savings.

One other point worth mentioning: if your data cubes are "skinny and
tall", with the third dimension long compared to the others, this loop
method will perform even better. For instance, using a similarly
sized data cube, but much taller:

 data=randomu(sd,153,231,1260)
 data[where(data lt .998)]=0.

I find speed parity between TOTAL and the thinned WHERE loop occurs
when 8% of the bands are null.

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

