Subject: Re: a serving of value_locate with a side of histogram
Posted by Jeremy Bailin on Mon, 22 Jun 2009 04:44:15 GMT

View Forum Message <> Reply to Message

On Jun 22, 12:06 am, Jeremy Bailin <astroco...@gmail.com> wrote:
> On Jun 21, 3:46 pm, Michael Galloy <mgal...@gmail.com> wrote:
>

>

>

>> David Fanning wrote:

>>> Jeremy Bailin writes:

>

>>>> Yeah, value_locate is very handy for problems like this! |
>>>> particularly like using it as a precursor to histogram - i.e. if you
>>>> want to do something fancy using reverse_indices but don't have
>>>> uniformly-spaced bins, first use value_locate to get integer indices
>>>> and then use histogram to do the heavy lifting.

>

>>> All right, I'll bite. Let's see an example of this.

>>> Maybe you can write an article and become the JD Smith

>>> of Value_Locate. :-)

>

>> No article, but I think this is what Jeremy is talking about:

>

>> |DL> ; get some random data

>> |DL> d = randomu(12345678L, 20)

>> |IDL> print, d

>> 0.765989 0.0234537 0.589727 0.535102 0.982231
>> 0.693016 0.328147

>> 0.295642 0.849918 0.592262 0.558133 0.534926
>> 0.541119 0.594831

>> 0.410172 0.928598 0.161021 0.928724 0.952072
>> 0.522173

>

>> |DL> ; specify cutoffs

>> |DL> cutoffs =[0.3, 0.4, 0.8]

>

>> |DL> ; compute index of "bin" to put each value into

>> |DL> bins = value_locate(cutoffs, d) + 1L

>> |DL> print, ind

>> 2 0 2 2 3
>> 2 1 0

>> 3 2 2 2 2
>> 2 2 3

>> 0 3 3 2

>

>> |DL>; compute histogram of bins
>> |IDL> h = histogram(bins, reverse_indices=r)

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29140&goto=67113#msg_67113
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67113
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> |DL> print, h
>> 3 1 11 5

>> |DL> : values less than 0.3
>> |DL> print, d[r[r[0]:r[1] - 1]]
>> 0.0234537 0.295642 0.161021

>> |DL> ; values between 0.3 and 0.4
>> |DL> print, d[r[r[1]:r[2] - 1]]
>> 0.328147

>> |DL> ; values between 0.4 and 0.8

>> [DL> print, d[r[r[2]:r[3] - 1]]

>> 0.765989 0.589727 0.535102 0.693016 0.592262
>> 0.558133 0.534926

>> 0.541119 0.594831 0.410172 0.522173

>> |DL> ; values greater than 0.8
>> |DL> print, d[r[r[3]:r[4] - 1]]
>> 0.982231 0.849918 0.928598 0.928724 0.952072

>> Mike

>> --www.michaelgalloy.com
>> Associate Research Scientist
>> Tech-X Corporation

Yes, that's exactly the sort of thing. Here's another good example:

Let's say you have 100,000 3D data points with each coordinate lying
between 0 and 1, and you want to divide up the space into a grid
10,000 x 10,000 x 10,000 and determine which grid cells contain more
than one point. It sounds like a good job for HIST_ND:

h = hist_nd([[x].[y].[z]], min=0., max=1., nbins=10000)
print, array_indices(h, where(h gt 1))

The only problem is that it would require an array of one trillion
elements that takes up 4TB of memory!

But in reality, at least 99.99% of those cells must be empty. First,
let's get a list of which cells contain any points:

xbin = floor(x / 1e-4)

ybin = floor(y / 1e-4)

zbin = floor(z / 1e-4)

bin = x + 10000ULL*(y + 10000ULL*z)
sortedbin = bin[sort(bin)]

uniguebins = sortedbin[unig(sortedbin)]

VVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Now we can use uniquebins as a mapping function. The values of "bin"
can range from 0 to 999999999999, but each one of those appears in
"uniquebins”, which has at most 100000 elements. So we replace each
element in bin with *its location within uniquebins*:

mappedbin = value_locate(uniquebins, bin)

All elements of mappedbin are integers between 0 and 10000, which
makes a perfectly reasonable histogram:

h = histogram(mappedbin, min=0)
The grid locations with multiple points are then:

multipleindex = where(h gt 1, nmulti)

if nmulti gt O then begin
xmulti = multipleindex mod 10000ull
ymulti = (multipleindex mod 100000000ull) / 20000ull
zmulti = multipleindex / 200000000ull

endif

...and, of course, if you want to do anything with the data points
that fall in those bins, you can do everything you'd normally do using
reverse_indices.

This is exactly the technique | used in WITHINSPHRAD_VEC3D from this
discussion:http://groups.google.com/group/comp.lang.idl-pvwa ve/browse _thread/thr...

I'll try to put together a bigger value_locate article later this
week. :-)=

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

-Jeremy.

| should learn to stop writing code at night. ;-) The grid locations
are really:

multipleindex = where(h gt 1, nmulti)

if nmulti gt O then begin
xmulti = uniquebins[multipleindex] mod 10000ull
ymulti = (uniquebins[multipleindex] mod 100000000ull) / 10000ull
zmulti = uniquebins[multipleindex] / 200000000ull

endif

-Jeremy.

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

