Subject: a serving of value_locate with a side of histogram
Posted by Jeremy Bailin on Mon, 22 Jun 2009 04:06:34 GMT

View Forum Message <> Reply to Message

On Jun 21, 3:46 pm, Michael Galloy <mgal...@gmail.com> wrote:

> David Fanning wrote:

>> Jeremy Bailin writes:

>

>>> Yeah, value_locate is very handy for problems like this! |

>>> particularly like using it as a precursor to histogram - i.e. if you
>>> want to do something fancy using reverse_indices but don't have
>>> uniformly-spaced bins, first use value_locate to get integer indices
>>> and then use histogram to do the heavy lifting.

>

>> All right, I'll bite. Let's see an example of this.

>> Maybe you can write an article and become the JD Smith

>> of Value_Locate. :-)

No article, but I think this is what Jeremy is talking about:

IDL> ; get some random data
IDL> d = randomu(12345678L, 20)
IDL> print, d

0.765989 0.0234537 0.589727 0.535102 0.982231
0.693016 0.328147

0.295642 0.849918 0.592262 0.558133 0.534926
0.541119 0.594831

0.410172 0.928598 0.161021 0.928724 0.952072
0.522173

IDL> ; specify cutoffs
IDL> cutoffs =[0.3, 0.4, 0.8]

IDL> ; compute index of "bin" to put each value into
IDL> bins = value_locate(cutoffs, d) + 1L

IDL> print, ind

2 0 2 2 3
2 1 0

3 2 2 2 2
2 2 3

0 3 3 2

IDL> ; compute histogram of bins
IDL> h = histogram(bins, reverse_indices=r)
IDL> print, h

3 1 11 5

VVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

IDL> ; values less than 0.3

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29141&goto=67115#msg_67115
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67115
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> print, d[r[r[0]:r[1] - 1]]
0.0234537 0.295642 0.161021

IDL> ; values between 0.3 and 0.4
IDL> print, d[r[r[1]:r[2] - 1]]
0.328147

IDL> ; values between 0.4 and 0.8
IDL> print, d[r[r[2]:r[3] - 1]]

0.765989 0.589727 0.535102 0.693016 0.592262
0.558133 0.534926

0.541119 0.594831 0.410172 0.522173

IDL> ; values greater than 0.8
IDL> print, d[r[r[3]:r[4] - 1]]
0.982231 0.849918 0.928598 0.928724 0.952072

Mike
--www.michaelgalloy.com
Associate Research Scientist
Tech-X Corporation

VVVVVVVVVVVVVVYVVYVYVYVYVYV

Yes, that's exactly the sort of thing. Here's another good example:

Let's say you have 100,000 3D data points with each coordinate lying
between 0 and 1, and you want to divide up the space into a grid
10,000 x 10,000 x 10,000 and determine which grid cells contain more
than one point. It sounds like a good job for HIST_ND:

h = hist_nd([[x],[y].[z]], min=0., max=1., nbins=10000)
print, array_indices(h, where(h gt 1))

The only problem is that it would require an array of one trillion
elements that takes up 4TB of memory!

But in reality, at least 99.99% of those cells must be empty. First,
let's get a list of which cells contain any points:

xbin = floor(x / 1e-4)

ybin = floor(y / 1e-4)

zbin = floor(z / 1e-4)

bin = x + 10000ULL*(y + 10000ULL*Z)
sortedbin = bin[sort(bin)]

uniquebins = sortedbin[unig(sortedbin)]

Now we can use uniquebins as a mapping function. The values of "bin"
can range from 0 to 999999999999, but each one of those appears in
"uniquebins”, which has at most 100000 elements. So we replace each

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

element in bin with *its location within uniquebins*:
mappedbin = value_locate(uniquebins, bin)

All elements of mappedbin are integers between 0 and 10000, which
makes a perfectly reasonable histogram:

h = histogram(mappedbin, min=0)
The grid locations with multiple points are then:

multipleindex = where(h gt 1, nmulti)

if nmulti gt O then begin
xmulti = multipleindex mod 10000ull
ymulti = (multipleindex mod 100000000ull) / 20000ull
zmulti = multipleindex / 200000000ull

endif

...and, of course, if you want to do anything with the data points
that fall in those bins, you can do everything you'd normally do using
reverse_indices.

This is exactly the technique | used in WITHINSPHRAD_VEC3D from this
discussion:
http://groups.google.com/group/comp.lang.idl-pvwave/browse_t
hread/thread/8be6763806211e75/e38f27055c7fa6e0?Ink=gst&q
=withinsphrad_vec3d#e38f27055c7fa6e0

I'll try to put together a bigger value_locate article later this
week. :-)=

-Jeremy.

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

