
Subject: Re: Call external 64bit
Posted by Toolbox on Mon, 13 Jul 2009 19:10:04 GMT
View Forum Message <> Reply to Message

On Jul 13, 8:56 am, FÖLDY Lajos <fo...@rmki.kfki.hu> wrote:
>  On Mon, 13 Jul 2009, Wox wrote:
>>  Hi
> 
>>  Calling a 32bit dll from IDL 64 bit doesn't work (see below). Is this
>>  normal behaviour?
> 
>>  IDL> print,!version
>>  { x86_64 Win32 Windows Microsoft Windows 7.1 Apr 21 2009      64 64}
>>  IDL>  print,call_external('test.dll','test',2u,/ALL_VALUE,/I_VALUE )
>>  % CALL_EXTERNAL: Error loading sharable executable.
>>                  Symbol: test, File = Test.dll
>>                  %1 is not a valid Win32 application.
> 
>>  Normal behaviour (IDL 32bit):
>>  IDL> print,!version
>>  { x86 Win32 Windows Microsoft Windows 7.1 Apr 21 2009      32      64}
>>  IDL>  print,call_external('test.dll','test',2u,/ALL_VALUE,/I_VALUE )
>>    10
> 
>>  Dll file used:http://xrdua.ua.ac.be/public/Test.dll
> 
>  I think this is normal. You can not mix 32 and 64 bit code in a single app
>  (eg. call_external passes 64 bit pointers to the DLL while the DLL expects
>  32 bit ones).
> 
>  regards,
>  lajos

There is an undocumented keyword in IDL 7.1 (and a few minor versions
earlier) on the idl_idlbridge object that will allow you to do what
you want.  (Of course, all caveats apply.)  The keyword is "ops" and
it lets you set the bit mode of the slave OPS process that loads idl
that you intereact with via the idl_idlbridge object.  By default, the
slave OPS uses the same bit mode as the master IDL process that
created it.  But, the undocumented "ops" keyword let you override it.
For example, you can have the following combinations:

master: 64-bit   slave: 32-bit
master: 32-bit   slave: 64-bit

Usage: o = obj_new('idl_idlbridge',ops='32') ; create a 32-bit slave
idl process

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6879
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29224&goto=67290#msg_67290
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67290
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


You can then use the 'setvar' & 'getvar' methods on the newly created
idl_idlbridge object to marshal data between the different bit mode
processes.

So, for your example, you could do the following from within the
master, 64-bit IDL process:

IDL> o32 = obj_new('idl_idlbridge',ops='32')
IDL> o32->execute, "dlm_load, 'test' "
IDL> o32->execute, "a = test_function(42)"
IDL> local_a = o32->getvar('a')

This would load your 32-bit 'test' DLM functionality into the 32-bit
slave process.  Call a function in your 32-bit DLM called
'test_function' that creates a variable named 'a' at the $MAIN scope
level in your 32-bit slave process.  Then, marshal variable 'a' back
to the 64-bit master process using 'getvar'.

You can also create as many mixed 32-bit and 64-bit slave processes
from the same master process as you want.  This would let you do
things like test the 64-bit port of your old 32-bit DLM at the same
time by creating a 32-bit slave process and 64-bit slave process and
sending commands to each and verify the results. For example:

IDL> oOld = obj_new('idl_idlbridge',ops='32') ; creates a 32-bit slave
process
IDL> oNew = obj_new('idl_idlbridge',ops='64') ; creates a 64-bit slave
process
IDL> oOld->execute, 'aOld = dosomething()'    ; execute 32-bit code
IDL> oNew->execute, 'aNew = dosomething()'    ; execute 64-bit code
IDL> local_aOld = oOld->getvar('aOld')
IDL> local_aNew = oNew->getvar('aNew')
IDL> bEqual = compare_values(local_aOld, local_aNew)

Don't try using the "ops" keyword on a run-time distribution: only on
a full installation.

Regards,
Toolbox

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

