Subject: Re: m choose n
Posted by Jeremy Bailin on Thu, 13 Aug 2009 03:21:43 GMT

View Forum Message <> Reply to Message

On Aug 10, 9:43 am, Paolo <pgri...@gmail.com> wrote:
> On Aug 8, 9:57 pm, Jeremy Bailin <astroco...@gmail.com> wrote:
>

V V V V

>> On Jul 29, 9:38 am, Paolo <pgri...@gmail.com> wrote:

>

>>> On Jul 28, 7:09 pm, Rob <rob.webina...@gmail.com> wrote:

>

>>>> Has anyone implemented the combinatorial function which the "n choose
>>>> K" combinations of an input vector, like Matlab's nchoosek? I'm not
>>>> talking about just the binomial coefficient nl/(m!*(n-m)!). I'm

>>>> interested in getting the "n choose k" combinations. Matlab's

>>>> function:

>

>>>> http://lwww.mathworks.com/access/helpdesk/help/techdoc/index. html?/acc...
>

>>>> Example:

>>>> octave-3.0.5:2> nchoosek([1,2,3,4],2)
>>>> ans =

>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>
>>>> |f not, | will just codify Matlab/Octave's hchoosek() and submit to
>>>> |TT Vis or something like that.

>

>>>> R

>

>>> Yes, | posted this function to the newsgroup a few years ago.

>

>>> http://tinyurl.com/nra4d8

>

>>> | report it below.

>

>>> To reproduce your result:

>>> a=[1,2,3,4]

>>> combind=pgcomb(4,2)

WMNNRFP PP
A DhWhL,WDN

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29263&goto=67683#msg_67683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> print,a[combind]

>>> or

>>> print,pgcomb(4,2)+1 if you are lazy :)

>

>>> |t's a nice example of a routine that would be

>>> somewhat harder to write without a BREAK statement :)
>

>>> Ciao,

>>> Paolo

>

>>> FUNCTION pgcomb,n,j

>>> ;'number of combinations of j elements chosen from n
>>> nelres=long(factorial(n)/(factorial(j)*factorial(n-j)))

>

>>> res=intarr(j,nelres);array for the result

>>> res[*,0]=indgen(j);initialize first combination

>

>>> FOR i=1,nelres-1 DO BEGIN;go over all combinations
>>> reg[*i]=res[*,i-1];initialize with previous value

>

>>> FOR k=1,j DO BEGIN;scan numbers from right to left
>

>>> IF res[j-k,i] LT n-k THEN BEGIN;check if number can be increased
>

>>> res|j-k,i]=res[j-k,i-1]+1;do so

>

>>> ;if number has been increased, set all numbers to its right
>>> ;as low as possible

>>> IF k GT 1 THEN resJ[j-k+1:j-1,i]=indgen(k-1)+res[j-k,i]+1
>

>>> BREAK;we can skip to the next combination

>

>>> ENDIF

>

>>> ENDFOR

>

>>> ENDFOR

>

>>> RETURN,res

>

>>> END

>

>> Here's a vectorized version... probably less efficient in most regions
>> of parameter space, but might be better if k isn't too large and the
>> number of combinations is large:

>

>> |IDL>a =[1,2,3,4]

>> |IDL> n = n_elements(a)

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> |IDL>k=2L
>> |IDL> g = array_indices(replicate(n,k),lindgen(n”k),/dimen)
>> |DL> print, a[q[*,where(min(q[1:k-1,*]-q[0:k-2,*],dimen=1) gt 0)]]

V

\Y%
WNEFEDNPEFE PP
A OWDN

>> |IDL> k =3L
>> |DL> g = array_indices(replicate(n,k),lindgen(n”k),/dimen)
>> |DL> print, a[g[*,where(min(q[1:k-1,*]-q[0:k-2,*],dimen=1) gt 0)]]

>> 1 2 3

>> 1 2 4

>> 1 3 4

>> 2 3 4

>

>> -Jeremy.

>

> Isn't it amazing what IDL can do if you throw memory at the problem?
>

> Now that would be so cool if we didn't have to create that k by n"k
> array :)

>

> Ciao,

> Paolo

Heheh... yeah, | know. :-)= Still, it might be more efficient than
the for loop for small k and large n.

Actually, you can do a lot better for large k by using the

complementarity of "n choose k" and "n choose (n-k)"... if n-k is

smaller, then first find the combinations for n choose (n-k), and then

use some histogram magic to find the complement of each set. That way
you don't need to generate enormous arrays to do things like 10 choose
9. ;-) Here's an implementation:

function nchoosek, n, k

nl = long(n)

kl = long(k)

if kI gt nl/2 then begin
kl=nl-k
kcomplement=1

endif else kcomplement=0

g = array_indices(replicate(nl,kl),lindgen(nl™kl),/dimen)

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if kI ne 1 then combi = q[*,where(min(q[1:kl-1,*]-g[0:kl-2,*],dimen=1)
gt0)] $
else combi = reform(q, 1, ni*kl)

; if k > n/2, find the complementary set using a pseudo-2D histogram
if kcomplement then begin

s = size(combi,/dimen)

ncombi = s[1]

index2d = combi + rebin(reform(lindgen(ncombi)*nl,
1,ncombi),kl,ncombi)

return, reform(where(histogram(index2d, min=0, max=nl*ncombi-1) eq
0) mod nl, k, ncombi)
endif else return, combi

end

-Jeremy.

Page 4 of 4 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

