
Subject: Re: Speedy Julia Set Fractals
Posted by Jeremy Bailin on Tue, 08 Sep 2009 04:23:29 GMT
View Forum Message <> Reply to Message

On Sep 6, 6:33 pm, Chris <beaum...@ifa.hawaii.edu> wrote:
> On Sep 6, 11:44 am, Caleb <calebwhe...@gmail.com> wrote:
>
>
>
>
>
>> Hello!
>
>> I have a quick question about some fractal work I am doing. I know
>> that doing matrix multiplications and histograms can exponentiate
>> processes that are historically done with for loops. I have been
>> trying to think of a way to do this with a fractal program I just
>> wrote. Here is a snippet of the code that I want to speed up:
>
>> <code>
>
>> ; Loop through and do calculations on each point:
>> FOR i = 0, x_size-1 DO BEGIN
>
>> FOR j = 0, y_size-1 DO BEGIN
>
>> ; Initialize number of iterations:
>> num = 0
>
>> ; Complex value of the current coordinate point:
>> z = COMPLEX(FLOAT(i-X_OFFSET)/(X_OFFSET*SCALE),FLOAT(j-Y_OFFSET) /
>> (Y_OFFSET*SCALE))
>
>> ; Calculate value of F(z) at above z:
>> z1 = z^K + c
>
>> ; Take magnitude of the above value (z1):
>> mag = ABS(z1^K + c)
>
>> ; Do loop until mag is greater than threshold or max iterations
>> have been calculated:
>> WHILE ((mag LE THRESH) AND (num LT MAX_ITERATION)) DO BEGIN
>
>> ; Re-Calculate value of F(z) at above z1:
>> z1 = z1^K + c
>
>> ; Take magnitude of the above value (z1):
>> mag = ABS(z1^K + c)

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29477&goto=67892#msg_67892
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67892
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> ; Increment iteration variable:
>> num++
>
>> ENDWHILE
>
>> ; Value of matrix is set to iteration number:
>> grid(i,j) = num
>
>> ENDFOR
>
>> ENDFOR
>
>> </code>
>
>> My problem is that I have a while loop for every iteration of my
>> matrix which can run up to 256 iterations if need be. Can I speed of
>> these calculations without going to multiple cores?
>
>> Oh and if you need more of the code let me know and I'll post it.
>
>> Thanks!
>
>> Caleb Wherry
>
> This might work (untested)
>
> xs = rebin(indgen(x_size), x_size, y_size)
> ys = rebin(1#indgen(y_size), x_size, y_size)
> z = COMPLEX(FLOAT(xs-X_OFFSET)/(X_OFFSET*SCALE),FLOAT(ys-Y_OFFSE T)/
> (Y_OFFSET*SCALE))
>
> grid = intarr(x_size, y_size)
> todo = grid + 1
>
> for num = 0, num lt maxiter, 1 do begin
> z1 = z^K + c
> mag = ABS(z1^K + c)
>
> hit = (mag le thresh)
> grid = num * todo * hit + grid * (1 - todo)
> todo = 1 - hit
> endfor
>
> This avoids the nested loop over x indices and y indices. It pays an
> extra penalty of running the iteration on every pixel MAXITER times.
> This code assumes that MAG decreases at every step, even after THRESH
> is crossed. I'm not sure if this is guaranteed to be true or not,

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> depending on K and C. Unless most pixels are supposed to be iterated
> far fewer than MAXITER times, my guess is that this code will be
> faster
>
> Chris

You can be clever about only performing the calculation for the pixels
that haven't yet converged... here's a (also untested) modified
version of your for loop that should be more efficient in that case:

for num = 0, maxiter-1 do begin
 unconverged = where(todo eq 1)
 z1 = z[unconverged]^K + c
 mag = ABS(z1^K + c)

 hit = (mag le thresh)
 grid[unconverged] = num * hit
 todo[unconverged] = 1 - hit
 if total(todo,/int) eq 0 then break
endfor

-Jeremy.

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

