Subject: Re: advise for saving a for-loop Posted by Jean H. on Mon, 14 Sep 2009 16:50:18 GMT

View Forum Message <> Reply to Message

```
Bernhard Reinhardt wrote:
> Hi,
>
> I don't know if there's a special term for what I'm trying to do:
> I have two 2D arrays of the same size (msg_x and msg_y) which contain x-
> and y-values. So msg_y consists of rows which contain mainly the same
> values and msg y consists of columns which contain mainly the same
> values. But it has to mentioned that values are slightly changing in a
> row or column. That's what make's things nasty.
> For msg_y it means, it may look like:
> 1000 1000 1000 1000 [..] 1001 1001 1001 1001 [..] 1002 1002
> 1001 1001 1001 1001 [..] 1002 1002 1002 1002 [..] 1003 1003
> 1002 1002 1002 [..] 1003 1003 1003 1003 [..] 1004 1004 1004
> I also have two linear arrays li_x and li_y of the same size. I now want
> to make a map with the same dimensions of msg x with a 1 where the
 points in the linear arrays match into the pseudo-grid and 0 elsewhere.
 Here's how I do it at the moment:
   for i=0, N_ELEMENTS(li_x)-1 do begin
>
    ind=WHERE(msg_x eq li_x[i] AND msg_y eq li_y[i])
>
    if ind[0] ne -1 then ligrid[ind] = 1
>
   endfor
>
  The 2-D arrays have sizes of 600x600 or 1800x1800 and the linear arrays
> are of size 10000.
>
  This means where has to search 10000 over the two 2D-arrays which takes
> some time.
>
> I guess there must be a smarter way to do. I thought about some
> solutions involving sort and histogram but so far I couldn't come up
 with a solution without for-loops.
>
> I'd be pleased if someone of you could enlighten me.
>
> Regards,
 Bernhard
Hi Bernhard,
```

yes, histogram is the way to go. You will want to 1) intersect msg_x and li_x, then 2) msg_y and li_y and 3) the ouptut of 1 and 2 (index based)

Have a look at http://www.dfanning.com/tips/set_operations.html

you can get ri from the 1st histogram and return the following, to get the index:

r = Where((Histogram(a, Min=mina, Max=maxa, reverse_indices=ri) NE 0) AND (Histogram(b, Min=mina, Max=maxa) NE 0), count)

IF count eq 0 THEN RETURN, -1 toReturn = ri[ri[r[0]]:ri[r[0]+1]-1]

for Rcount = 1, count-1 do begin toReturn = [toReturn,ri[ri[r[Rcount]]:ri[r[Rcount]+1]-1]] endfor

Jean