Subject: Re: optimization; which point falls into a polygon Posted by Jeremy Bailin on Wed, 23 Sep 2009 11:46:06 GMT View Forum Message <> Reply to Message

Something akin to JD's match_2d might work... it would at least tell you the closest corner of a satellite pixel for each GIS point, and is probably faster than building a triangulation.

Is there an analytic expression for the satellite pixel corners, or do you really have to go from the data? I'm trying to figure out if you can directly compute it...

-Jeremy.

On Sep 22, 5:57 pm, Klemen <klemen.zak...@gmail.com> wrote:

> Hi,

>

- > I am working with geostationary satellite data and some GIS rasters.
- > The satellite data do not have a regular sampling (pixel has a form of
- > a parallelogram) but I know corner coordinates of each pixels.

>

- > I would like to do some kind of spatial join I would like to know
- > which of my pixels in GIS rasters (regularly sampled) fall into each
- > satellite pixel I would like to create a raster where each GIS pixel
- > contains an index of the corresponding satellite index. This can be
- > easily done using 4 for loops when the GIS raster is small. However, I
- > would like to do this on a 1000 * 1000 large GIS layer. Satellite data
- > have factor 3 less pixels in one direction and factor 6 less pixels in
- > the other direction. Such a way is then really time consuming.

>

- > How to do it faster? I was reading of triangulation, but this would
- > probably mean that I would have to triangulate each GIS raster point
- > with satellite centre points and then check in which of four closest
- > satellite pixels falls the raster pixel. But I can imagine, that
- > building a triangulation for a million times is also not really fast.

>

> Does anybody have a suggestion?

>

- > Thank you in advance!
- > Klemen