
Subject: Re: Smoothing 3D array with periodic boundaries: what am I missing?
Posted by pgrigis on Mon, 28 Sep 2009 14:10:57 GMT
View Forum Message <> Reply to Message

On Sep 28, 2:56 am, Luds <lud...@uvic.ca> wrote:
> On Sep 25, 5:52 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>
>
>> On Sep 24, 1:19 pm, Luds <lud...@uvic.ca> wrote:
>
>>> I've been trying for a couple days now to write a Gaussian-smoothing
>>> algorithm to smooth a cube of (scalar) data with periodic boundary
>>> conditions (this is needed for my task since "structure" in the data
>>> that straddles an edge of the cube appears on two+ sides of the box).
>>> I've made it so far, but now can't seem to get around excessive For-
>>> loop's...
>
>>> For example, say the box of scalars values runs from (0,1) in x,y, and
>>> z, and has N^3 points. To smooth at point (x,y,z) in the box I
>>> generate a 3-D Gaussian with its centroid (mean) at point x,y,z:
>
>>> Gauss_field = rebin(periodic_gauss_func(X,[[sig],[x]]),N,N,N) * $
>>> rebin(reform(periodic_gauss_func(X,[[sig],[y]]),
>>> 1,N),N,N,N) * $
>>> rebin(reform(periodic_gauss_func(X,[[sig],[z]]),
>>> 1,1,N),N,N,N)
>
>>> where periodic_gauss_func is a 1-D Gaussian kernel function that wraps
>>> around the box edge, X=(0,1,...N-1)... sig=sigma. (i.e. this just does
>>> separate Gaussian smoothing along each direction and combines the
>>> result).
>
>>> Then the smoothed field at point (x,y,z) is something like
>
>>> Smoothed(x,y,z) = TOTAL(TOTAL(scalar_field*Gauss_field,1))
>
>>> What I can't figure out is an efficient way to do this for all (x,y,z)
>>> - for a N=1024^3 grid it takes a couple seconds to generate
>>> Gauss_field. Realistically, I'll have N=1024^3, so For-loops are
>>> pretty much useless(???), and memory is a bit of an issue too.
>
>>> Does anyone know of any "canned" routines to do this type of Gaussian
>>> smoothing? Or of an efficient way to convolve my 3D Gaussian field
>>> with my scalar field for all (x,y,z)? (I must stress that the Gaussian
>>> kernel must not be affected by, or truncated at, the box edge)
>
>>> Many thanks!!

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6214
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29586&goto=68196#msg_68196
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68196
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>> Aaron
>
>> Wouldn't the Fourier convolution theorem approach work here? FFT your
>> data cube, FFT your 3D Gaussian kernel, multiply them, and reverse FFT
>> them back out? You may need to judiciously use TEMPORARY and/or the /
>> OVERWRITE keyword if memory is an issue.
>
>> -Jeremy.
>
> Yeah, I guess this is the way to go after all.
>
> I had tried this but didn't really trust my smoothed result. E.g. I
> attempted to smooth a slab of my data cube with smoothed_field=fft(fft
> (field)*gaussian_filter,1), but only the upper half of the smooth
> field resembled the original image; the lower half was an inverted
> backwards copy of the upper half (at least that's what it looked like
> to my eye). (BTW, it's a Gaussian random field, CDM power-spectrum).
>
> I guess I'll keep messing around with the IDL's fft. I've read on the
> help pages that the lowest frequencies in the fft should appear
> something like a spike in the middle of the fft'd image... I see a
> spike in the corner (0,0) of the image, which means I probably
> misinterpreting something simple.

Don't worry - the ordering of the frequencies in FFT nearly
always is set like that - if that's confusing, a shift of
half the size of the array will set them the way you expect
them to be (with 0 frequency in the middle of the array).

To see the effect - take the 1-dim FFT of a gaussian.
The result is also a gaussian - but you'll need a shift
of half the size of the array to have it properly centered
on the middle of the array.

Ciao,
Paolo

>
> Thanks!!

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

