
Subject: match_3d.pro
Posted by Grant K on Thu, 15 Oct 2009 09:38:29 GMT
View Forum Message <> Reply to Message

Hi,

I was looking for a way to do the nearest neighbour problem in 3D and
didn't find anything pre-written that would do it. I've taken J.D.
Smith's match_2d.pro and turned it into match_3d.pro and have pasted
it below for people who might like to use it. I'm not an IDL expert...
but it appears to work and the modifications were (thankfully)
minimal.

If anyone wants to tidy/fix/streamline it to make an version for more
public consumption then go for it.

cheers
Grant

--

;+
; NAME:
; MATCH_3D
;
; PURPOSE:
;
; Perform a match between two sets of 3D coordinates, finding
; the closest coordinate match (in the Euclidean sense) to the
; search set, within some search radius. This routine is simply
; match_2d.pro with an extra dimension added, for those who need
; to think about where something actually is, rather than where
; it appears to be on the sky...
;
; CALLING SEQUENCE:
; match=MATCH_3D
(x1,y1,z1,x2,y2,z2,search_radius,MATCH_DISTANCE=)
;
; INPUTS:
;
; x1,y1,z1: The target list to search for matches, of length n1.
;
; x2,y2,z2: The search list of length n2, to be searched for
; matches to [x1,y1,z1].
;
; search_radius: The search radius within which matches will be
; found. Only if the closest matching coordinate in
[x2,y2,z2]

Page 1 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6939
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29624&goto=68290#msg_68290
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68290
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; is within the search radius will it be returned. This is a
; critical variable in tuning the resources required by
; MATCH_3D. It can be a scalar or two element vector (for
; asymmetric radii). See NOTES and WARNING.
;
; KEYWORD PARAMETERS:
;
; MATCH_DISTANCE: On output, the distances between the matches
; and the returned coordinate from the set [x1,y1,z1]
; (<=search_radius), is returned.
;
; OUTPUTS:
;
; match: A 1D vector of length n1 containing the indices of
x2,y2
; and z2 for the closest match to each [x1,y1,z1], within the
; search_radius. If no match was found within the search
; radius, -1 is returned at that location.
;
; EXAMPLE:
;
; n=100000
; x1=randomu(sd,n) & y1=randomu(sd,n) & z1=randomu(sd,n)
; x2=randomu(sd,n) & y2=randomu(sd,n) & z2=randomu(sd,n)
; match=match_3d(x1,y1,z1,x2,y2,z2,.002,MATCH_DISTANCE=md)
;
; SEE ALSO:
;
; HISTOGRAM, HIST_ND
;
; NOTES:
;
; This match program uses HIST_ND to pre-bin the 3D search
; coordinates based on position, within some canonical
; search_radius. See:
;
; http://www.dfanning.com/code_tips/matchlists.html
;
; for a discussion of its methods. Of principle importance in
; the efficiency and behavior of the match is the SEARCH_RADIUS
; parameter. This is the maximum radial distance within which a
; match point must lie to be returned. Here's a diagram
; illustrating the problem and method in 2D (for 3D simply at an
; extra layer of boxes on top, giving 8 bins). For each target
point,
; four separate bins each of width 2*search_radius are searched
; among the binned search list, depending on its location within
; the bin.

Page 2 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;
;
; +----------+----------+
; | t1 | |
; | | |
; | | |
; | | |
; | | |
; +----------+----------+ -
; | | | |
; | | o | |
; | | | | 2*search_radius
; | | | |
; | | | |
; +----------+----------+ -
; t2
;
;
; The point `t2' is the closest to the search point `o', but it
; is not within the search_radius, therefore it is not
; considered. Instead, point `t1' is found (and discarded),
; despite the fact that `t2' is closer.
;
; Ideally, the search radius should be set to something useful
; in terms of the match (e.g. positional uncertainty, etc.).
; However, if the input target coordinates ([x2,y2]) span a
; large range, it may be necessary to use a larger search
; radius to avoid an excessively large number of bins.
; Typically there will be an optimal search radius which is
; fastest. The tradoff is as follows: the larger the search
; radius, the smaller the number of bins to search, but the
; more search points must be considered per target point. The
; smaller the search radius, the smaller the number of search
; points per bin, but the greater the number of bins.
; Something like the median inter-point separation is probably
; close to optimal.
;
; Since lines of longitude converge towards the poles, a simple
; trick to obtain roughly the same matching radius in both
; longitude and latitude is to give an asymmetric
; search_radius: [eps/cos(mean(latitude)),eps] for [longitude,
; latitude]. This works only when the range of latitude is
; small.
;
;
; WARNING:
;
; Distance is evaluated in a strict Euclidean sense. For

Page 3 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; points on a sphere, the distance between two given
; coordinates is *not* the Euclidean distance. As an extreme
; example, consider two points very near the N. pole, but on
; opposite sides (one due E, one due W). For small patches
; away from the poles, this Euclidean assumption is
; approximately valid, and the method works. See NOTES above
; for a tip regarding obtaining a (more) uniform match
; criterion on the sphere. For regions very near the pole, the
; match could be made after suitably projecting all coordinates
; using a map projection which alleviates this behavior.
;;
;
; MODIFICATION HISTORY:
;
; Thur Oct 2009 (G Kennedy): take match_2d.pro and add z's to
; make match_3d.pro. I take no credit
; for being clever and all responsibility if this routine
doesn't
; work as advertised.
;
; Wed Apr 22 17:56:26 2009 (J.D. Smith): Correctly account for
; list ranges and "one bin off" matches.
;
; Mon Jul 30 10:56:31 2007, J.D. Smith <jdsmith@as.arizona.edu>
;
;	 Written.
;
;-
 ;###
##################
;
; LICENSE
;
; Copyright (C) 2007, 2009 J.D. Smith
;
; This file is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published
; by the Free Software Foundation; either version 2, or (at your
; option) any later version.
;
; This file is distributed in the hope that it will be useful, but
; WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
; General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this file; see the file COPYING. If not, write to the
; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,

Page 4 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Boston, MA 02110-1301, USA.
;
 ;###
###################

function
 match_3d,x1,y1,z1,x2,y2,z2,search_radius,MATCH_DISTANCE=min_ dist
 bs = 2*search_radius ;this is the smallest binsize allowed
 mx=[max(x2,MIN=mnx2),max(y2,MIN=mny2),max(z2,MIN=mnz2)]
 mn=[mnx2,mny2,mnz2]
 mn-=1.5*bs & mx+=1.5*bs ;expand the range by (more than) the
bin size
 h = hist_nd([1#x2,1#y2,1#z2],bs,REVERSE_INDICES=ri,MIN=mn,MAX=mx)
 d = size(h,/DIMENSIONS)

 ;; Bin location of X1,Y1,Z1 in the X2,Y2,Z2 grid
 xoff = 0.> (x1-mn[0])/bs[0] < (d[0]-1.)
 yoff = 0.> (y1-mn[1])/(n_elements(bs) gt 1?bs[1]:bs) < (d[1]-1.)
 zoff = 0.> (z1-mn[2])/(n_elements(bs) gt 1?bs[2]:bs) < (d[2]-1.)
 xbin = floor(xoff) & ybin = floor(yoff) & zbin = floor(zoff)
 bin = xbin + d[0]*(ybin + d[1]*zbin) ;The 1D index of the bin
it's in

 ;; We must search 8 bins worth for closest match, depending on
 ;; location within bin (i.e. towards any of 8 quadrant directions
 ;; ul, ur, ll, lr and with back/forward now too...).
 xoff = 1-2*((xoff-xbin) lt 0.5) ;add bin left or right
 yoff = 1-2*((yoff-ybin) lt 0.5) ;add bin down or up
 zoff = 1-2*((zoff-zbin) lt 0.5) ;add bin forward or back

 n1=n_elements(x1)
 min_pos = make_array(n1,VALUE=-1L)
 min_dist = fltarr(n1,/NOZERO)

 rad2=search_radius^2

 for i=0,1 do begin ;; Loop over 4 bins in the correct quadrant
direction
 for j=0,1 do begin
 for g=0,1 do begin ;; and one more for z direction

 ;; One of 8 search bins for all the target points
 b = 0L>(bin+i*xoff+j*yoff*d[0]+g*zoff*d[1])<(d[0]*d[1]*d
[2]-1)

 ;; Dual HISTOGRAM method, loop by count in the search bins
 h2 = histogram(h[b],OMIN=om,REVERSE_INDICES=ri2)

Page 5 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ;; Process all bins with the same repeats (>= 1) at a time
 for k=long(om eq 0),n_elements(h2)-1 do begin
 if h2[k] eq 0 then continue
 these_bins = ri2[ri2[k]:ri2[k+1]-1] ;bins with k+om
search points

 if k+om eq 1 then begin ; single point
 these_points = ri[ri[b[these_bins]]]
 endif else begin ; range over k+om points, (n x k+om)
 targ=[h2[k],k+om]
 these_points = ri[ri[rebin(b[these_bins],targ,/
SAMPLE)]+ $
 rebin(lindgen(1,k+om),targ,/
SAMPLE)]
 these_bins = rebin(temporary(these_bins),targ,/
SAMPLE)
 endelse

 ;; Closest distance squared within this quadrant's bin
 dist = (x2[these_points]-x1[these_bins])^2 + $
 (y2[these_points]-y1[these_bins])^2 + $
 (z2[these_points]-z1[these_bins])^2

 if k+om gt 1 then begin ;multiple points in bin: find
closest
 dist = min(dist,DIMENSION=2,p)
 these_points = these_points[p] ;index of closest
point in bin
 these_bins = ri2[ri2[k]:ri2[k+1]-1] ;original bin
list
 endif

 ;; See if a minimum is already set there
 set = where(min_pos[these_bins] ge 0, nset, $
 COMPLEMENT=unset,NCOMPLEMENT=nunset)

 if nset gt 0 then begin
 ;; Only update those where the new point is closer
 closer = where(dist[set] lt min_dist[these_bins
[set]], cnt)
 if cnt gt 0 then begin
 set = set[closer]
 min_pos[these_bins[set]] = these_points[set]
 min_dist[these_bins[set]] = dist[set]
 endif
 endif

 if nunset gt 0 then begin ;; Nothing set, it's

Page 6 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

closest by default
 wh=where(dist[unset] lt rad2,cnt) ;demand it's within
radius
 if cnt gt 0 then begin
 unset=unset[wh]
 min_pos[these_bins[unset]] = these_points[unset]
 min_dist[these_bins[unset]] = dist[unset]
 endif
 endif
 endfor
 endfor
 endfor
 endfor
 if arg_present(min_dist) then min_dist=sqrt(min_dist)
 return,min_pos
end

Page 7 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

