
Subject: Re: Using where() on slices of data cubes
Posted by JDS on Tue, 20 Oct 2009 20:03:30 GMT
View Forum Message <> Reply to Message

On Oct 20, 8:22 am, Conor <cmanc...@gmail.com> wrote:
> I feel like this should be an easy one, but I've never quite figured
> it out. Let's say I got a data cube and I want to do something on
> just a slice of it, say I want to turn certain values in a column into
> something else:
>
> w = where(cube[1,*,*] lt 0)
>
> It seems like you should be able to do something like this:
>
> cube[1,w] = 1e24
>
> But that doesn't work... Somehow I can't quite figure out the right
> way to do this.

It's impossible for IDL to know the dimensionality of the original
array which from which you extracted a given set of elements. WHERE
simply gives you the zero-based running index into a given pile of
data, independent of its form and (much less) the form of the parent
array from which it was derived. So it's not at all surprising that
the returned set of indices doesn't "plug right in" in some convenient
way. The (likely) quickest solution in this case is the REFORM,/
OVERWRITE method given by Greg, since it doesn't actually copy any
data. But unfortunately, it's not at all general. For example,
suppose you had been interested in longitudinal slices instead, ala:

 w=where(cube[*,1,*] lt 0)

A solution similar to Greg's would require first TRANSPOSE'ing the
cube such that the elements of the slice of interest could be put in
order along some dimension, e.g.:

 w=where(cube[*,1,*] lt 0)
 sz=size(cube,/dim)
 cube=reform(transpose(cube,[0,2,1]),[sz[0]*sz[2],sz[1]])
 cube[w,1]=1e24
 cube=transpose(reform(cube,sz[0],sz[2],sz[1],/overwrite),[0, 2,1])

This obviously creates two transposed copies of the cube, which is
memory and CPU inefficient, not to mention difficult to remember. For
operating on small cubes, or a large fraction of the cube elements, it
might be reasonable. If, however, you have only a few elements to
access in a very large array (say just a sprinkling of negatives, in
your example), this would be very wasteful indeed.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6762
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29641&goto=68325#msg_68325
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68325
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

In my opinion, a far better general solution to these sorts of
problems is to master the ability to recreate *yourself* any of the
index computations IDL does for you (and, by extension, any that it
doesn't). For example, when you write

 slice = cube[1,*,*]

IDL doesn't just conjure the appropriate elements out of thin air. It
examines the dimensions of 'cube', and implicitly constructs a one-
dimensional index vector for all of the indices being referenced.
This happens in the background, but you can easily verify it by seeing
how much memory IDL has used for this temporary index vector. As a
side note, this can occasionally be memory inefficient, which is why
it's sometimes *preferable* to construct your own indices, even when
IDL could have done it for you (see http://www.dfanning.com/misc_tips/submemory.html).

As for the posed problem, let's skip to the end. In your example, the
answer looks like:

 sz=size(cube,/DIMEN)
 cube[1+sz[0]*(w mod sz[1] + w/sz[1]*sz[1])] = 1e24

Where does this come from? Your original cube "slice" has dimensions
[sz[1],sz[2]], and is at an x position of 1. Recall that

 slice_col = w mod sz[1]

gives the column inside this slice, and

 slice_row = w/sz[1]

gives the row. Nothing fancy there. If you forget these, you can
easily use the IDL provided convenience function ARRAY_INDICES
instead:

 slice_col_row = array_indices(sz[1:2],w,/DIMENSIONS)

However, this is just doing the same pair of computations, which are
not that hard to remember.

So far so good. We need to create a one dimensional index vector
appropriate for the cube's dimensionality, ala (very generally):

 ind = x + sx * (y + sy * z)

Now comes the (slightly) tricky bit. We need to do this *for the
selected slice elements*. But wait! The slice's column (x direction)

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

is the full cube's row (aka y direction), and the slice's row is the
full cube's plane (aka z direction). So what we need looks like:

 ind = x + sx * (slice_col + sy * slice_row)

aka

 ind = 1 + sz[0] * (w mod sz[1] + w/sz[1]*sz[1])

One other wrinkle. Notice I didn't write sz[1] * w/sz[1]. This is
because operator precedence would compute this as (sz[1]*w)/sz[1],
which would give you.... w -- not what you want. You can either write
sz[1]*(w/sz[1]), or just rearrange terms as I have done.

OK, you may be asking yourself, what has this really gained me? A
lot, actually. Once you become fluent in converting back and forth
between one-dimensional indices and [x,y,z,...] index sets in
arbitrary dimensions, you are able to manipulate with ease the full
range of indexing problems, and are, most importantly, no longer
reliant on IDL's convenient but limited higher-order indexing
operators. For example, suppose I had originally issued the call:

 w=where(cube[1,5:*,10:1024] lt 0)

you should easily be able to generalize the above arguments to access
these elements.

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

