Subject: Re: "Correct" Data Philosophy Posted by David Fanning on Thu, 17 Dec 2009 21:56:56 GMT

View Forum Message <> Reply to Message

Kenneth P. Bowman writes:

- > The problem of estimating values where you have no data is
- > very common and often very difficult. The best approach depends
- > on the character of the data, the size of the gaps, the methods used,
- > and the purpose of the analysis.

>

- > It is very important to not mislead yourself or your readers.
- > My first recommendation is *not* to fill gaps whenever possible --
- > instead, adapt your analysis and display methods to the data.
- > If you are displaying an image or contour, for example, show
- > the viewer where the data is missing with a special color
- > and don't display contours where there is no data.

>

- > If I am plotting global maps of 5 deg x 5 deg data, it should
- > look chunky (pixelated), not smooth. That reminds the viewer
- what the actual resolution of the data is.

>

- > If you need to do a Fourier transform, consider using
- > least-squares estimation rather than interpolating
- > and using an FFT.

>

- > If the data is smooth and the gaps are small, interpolation
- > will probably work well. If the data is noisy and the gaps are
- > large, it is possible that nothing will work well.

>

- > If you do fill gaps, always test the impact on your results.
- > Does it matter whether you use linear or cubic interpolation,
- > for example?

- > In the end, you need to be confident that your results do not
- > depend significantly on how you chose to estimate the missing
- > data.

OK, here is my problem: I don't have any idea what you people are talking about. And neither do the folks asking me questions. :-(

This, in particular, is opaque to me:

If you need to do a Fourier transform, consider using least-squares estimation rather than interpolating and using an FFT.

OK, I will, but *how*!?

> Is it similar to "interpolation" or "approximation" or "estimation"?

Yeah, it's similar to all of those, I guess. But, how would you do it in IDL?

- > How about linear/bilinear/trilinear interpolation? Or minimum
- > curvature surface or thin-plate-spline? It also depends on how many
- > values are available and/or missing. There are other fitting/
- > interpolation functions too.

Does IDL even *do* these things!? Or do I have to go learn Matlab?

I guess I was hoping for a couple of examples. I really don't have the time or energy to open up a whole new research area here, although I can see that it might occupy my time quite fruitfully for a number of years. :-(

Cheers,

David

David Fanning, Ph.D. Fanning Software Consulting, Inc. Coyote's Guide to IDL Programming: http://www.dfanning.com/ Sepore ma de ni thui. ("Perhaps thou speakest truth.")