Subject: Re: IDL 8.0 compile_opt changes
Posted by penteado on Wed, 06 Jan 2010 18:35:13 GMT

View Forum Message <> Reply to Message

| realised now that | had not thought this through:

On Jan 5, 9:54 pm, pp <pp.pente...@gmail.com> wrote:

>> 1. Overloading structure dereference and method invocation breaks the
>> ability to semantically parse a.b.

That is a good point that | had not considered. | only noticed that

with the assumed idI2 option, there would be no ambiguity in complete,
correct lines. But as you point out, there would be in the middle of

writing a line. Though, as you indicate in (3), the ambiguity would

only occur between methods and fields of self. In other cases, the
interpreter should know whether you typed a structure or an object.

V V.V V VYV

This is not actually a problem. It would just be the same kind of
ambiguity that happens in the middle of typing a name, when there are
more than one that begin with that same characters. At that point,
using completion should give the user both options. In the case of the
function/member ambiguity, the options would be "a.b(" and "a.b", as
the first is the function, and the second is the structure member.

> Contrary to C++, Java and Python, the flat namespace and case-

> insensitivity already make it trickier to pick names in IDL, so it may
> be even more important to differentiate between methods and fields
> with the operator.

| had not remembered that in C++ and Java it is not possible to have
the same name associated to a function and a variable at the same
time. In Pyhton, the last use for a name rebinds it ("overwrites" the
previous use), so there is only one thing with the name. So there is

no ambiguity in them. In IDL, assuming the idl2 option would remove
the ambiguity through the syntax, so no problems either.

So, yes, it is a bit easier when reading a program to resolve the
meaning through a different operator, as it is now. But | find it only
slightly easier than looking at the syntax, so not much of an issue.
Contrary to what some people have written in this thread, this is not
the same as the ()/[] issue, as only looking at a line written using

() is not enough to know if it is a function or an array. In the case

of the dot operator, assuming the idI2 option, there would not be any
ambiguities in complete lines of code.

The only situation with an ambiguity would be the one mentioned by JD,
in the middle of writing a line, when using autocompletion. But in

those moments there is the unavoidable ambiguity from having several
names that begin with the same characters anyway.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29949&goto=69321#msg_69321
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69321
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

It could be argued that the dot is more proper because both data and
functions are conceptually the same, they are "parts" of an object,
and perhaps this is the reason for its choice in C++, Java and Python.
So | do not see much difference between using either operator. Either
is fine, as long as the idI2 option is assumed if the dot operator is
used.

However, in the separate question of how to assume the idl2 compile
option, which is already needed, even without the dot operator change,
there are very important implications. Which is why | previously

argued that a new extension is the best choice. The new extension is
better even than the commented idl1 option, since no change to old
files is required, and it prevents old IDL versions trying to

interpret code that they cannot understand properly (as in the issue

#2 mentioned by JD).

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

