Subject: Re: IDL 8.0 compile_opt changes
Posted by Paul Van Delst[1] on Thu, 07 Jan 2010 16:35:08 GMT

View Forum Message <> Reply to Message

Chris Torrance wrote

> The primary change is the use of the dot "." for object method calls.
> The use of the "." for method calls is now industry standard, for

> example in languages such as Java, Python, etc.

So0? You open Pandora's box simply because newer languages do it a particular way?

And there are languages that don't use "." for method calls or structure dereference: e.g.
Fortran90/95/2003/2008

In Fortran, "%" does that. (2003+ for the object method invocation)

| remember when Fortran90 was still being adopted and there was much wailing, gnashing of
teeth, and wringing of hands about the fact that the Fortran standard used "%" rather than

." (the latter being used in some earlier DEC extentions) for structure component
dereferencing.

Well, you know, we all got over it. :0)

BTW, the other change with Fortran that caused a lot of consternation (*.f == fixed
format, *.f90 == free format) still causes a fair amount of head scratching so | don't
recommend the file extension approach.

My PO is if people get annoyed when they see
child = p->Get(index)
because they think it should look like
child = p.Get(index)
they need to gain perspective about what is *really* important.

Is there a less nebulous reason for ITTVIS looking to replace "->" with "."? Otherwise,
JD's points below highlight the sanity that should be adopted.

And, | would prefer ITTVIS's time be spent doing useful stuff like providing additional
functionality rather than generating make-work for themselves and their users. E.qg.:

- Improved interpolation functions for 1,2,3,..,N-dimensional data would be great.

- More options for integrating tabulated data too (e.g. being able to select the
interpolation method, or integration technique (simspon's, boole's, etc.).

- A unit testing capability (maybe from Mike Galloy via his mgunit?)

- object widgets (maybe from David Fanning via Catalyst?)

- easy PS output from iTools like we have for Direct Graphics.

- metaprogramming capabilities (if you want IDL to be more like Python or ruby, that's
where you should be spending your time) so | don't have to waste time writing boilerplate
get_property and set_property methods for objects.

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29949&goto=69456#msg_69456
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69456
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

- etc..

Anyway...

cheers,

paulv

JD Smith wrote:

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

While | long ago converted to [] for array subscripting for the
reasons most succinctly expressed by Wayne, | have mixed feelings
about converting the method invocation operator from '->'to "'
purely for cosmetic reasons. Problems | see with this:

1. Overloading structure dereference and method invocation breaks the
ability to semantically parse a.b.

With this overloading, it is impossible to determine if 'a.b' is a

method procedure call, or a structure field dereference, *except at
runtime in the IDL interpreter*! For example, in IDLWAVE you can a->b
[M-Tab] and have all "b..." procedure methods completed, or c=a->b[M-
Tab] for function methods. Though I'm not sure, | suspect this would
have a similar impact on the Workbench: loss of edit-time or shell-
interaction-time differentiation among structure fields/object methods/
etc through direct inspection of the source.

2. It will *not* be immediately obvious, or *ever* obvious, to a human
observer that code which includes statements like a.b(c) must be
compiled with IDL8.0 to run correctly. Consider a simple function
found deeply buried on disk:

function do_something, input
return, input.something_else(1)
end

This small function would compile equally in IDL 8 and IDL <8, but

have a totally different meaning depending on what INPUT was passed in
which version. You can make compile_opt idl2 the default in IDL 8,

but this does little to relieve this issue, since older versions of

IDL will compile this fine (and choke horribly if passed an object).

3. IDL is not Python. IDL enforces strict encapsulation of object
data, i.e. all object data must be accessed through a method (except
within the object's methods themselves). Python has no object data
encapsulation. In Python it is natural to mix method invocation with
data access. In IDL this only occurs only in an object's own
methods. Which is clearer?

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

self->limit, self.limit

self.limit, self.limit

Just my $1D-2. (BTW, I think negative indexing sounds great!).

VVVVYVYVYVYVYV

JD

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

