
Subject: Re: performing multiple histograms without loops
Posted by Jeremy Bailin on Wed, 03 Feb 2010 14:12:47 GMT
View Forum Message <> Reply to Message

> Did you compare the speed of your approach to the loop-approach? For
> reasonably sized datasets I expect the loop to be faster. This was
> also true for the chunk index generation you mentioned.

Here's some test code (just does the histogram, since the
reverse_indices come out in different forms and it will depend what
exactly you want to do with them). The scaling depends on ndatasets,
datalen, and datarange. I had Ed's problem in mind, where he said each
data set corresponded to a pixel in a large image, so there could be
millions of data sets, and datalen seemed low since he was willing to
append them all by hand. First, the punch line:

ndatasets datalen datarange Loop-speed Vectorized-speed
10 10 4 5.8e-5 3.0e-5
10000 10 4 0.014 0.0031
10000000 10 4 12 3.5
10 10000 4 0.0010 0.0029
10 10000000 4 0.81 2.8
1000 1000 4 0.0044 0.031
10 10 100 5.4e-5 4.2e-5
10000 10 100 0.014 0.0086
10000000 10 100 11.5 9.1
10 10000 100 0.0011 0.0030
10 10000000 100 0.80 2.8
10000 10 10000 0.39 0.40
10 10000 10000 0.0016 0.0035

So, if datarange is low and ndatasets is larger than datalen, the
vectorized version wins. If datalen is larger than ndatasets, the loop
wins no matter what. If datarange is large, the loop usually wins or
comes close (but note that datarange never needs to be larger than the
product of ndatasets and datalen - if it is, use uniq+value_locate to
remap the values into a smaller range). The best approach definitely
depends on your problem!

Here's the code:

ndatasets=10l
datalen=10l
datarange=4l

datasets = round(randomu(seed,datalen,ndatasets)*datarange)

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30085&goto=69683#msg_69683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; needed for both approaches, so leave it out of timing
minval=min(datasets, max=maxval)

; loop version
t0=systime(/sec)
for i=0l,ndatasets-1 do h=histogram(datasets[*,i], min=minval,
max=maxval)
t1=systime(/sec)
print, 'Loop approach: ',t1-t0

; vectorized version
t0=systime(/sec)
dataspan=maxval-minval
datasets -= minval
h = reform(histogram(datasets + rebin(transpose(ul64indgen(ndatasets)
*dataspan), $
 size(datasets,/dimen)), min=0, max=ulong64(ndatasets)*dataspan-1),
dataspan, $
 ndatasets)
t1=systime(/sec)
print, 'Vectorized approach: ',t1-t0

-Jeremy.

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

