Subject: Re: performing multiple histograms without loops
Posted by MC on Tue, 02 Feb 2010 09:48:18 GMT

View Forum Message <> Reply to Message

On Feb 2, 6:25 pm, Jeremy Bailin <astroco...@gmail.com> wrote:

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

| thought it would be worth expanding on the technique that | used in
response

to Ed's question, because it's a very useful one. The basic idea is
this:

suppose | want to use HISTOGRAM not on one a single set of N data
points, but

independently on multiple (say M) sets each of N data points. The
simple solution

is to use a for loop, but if M is large the IDL loop penalty soon
becomes a problem. Is it possible to avoid a loop?

The answer is yes, and the trick is to modify the data in each of the

M data

sets so that they don't overlap, and then use a single HISTOGRAM on
all

of them at once.

For a concrete example, let's say that we have 5 data sets, each with
10

data points that are small integers (for convenience - if your data
doesn't

look like this but contains individual values, then you can use a
combination

of UNIQ and VALUE_LOCATE to turn it into this form, or just
VALUE_LOCATE

if you need to bin different values together).

setl =[4,1,2,3,1,3,2,2,1,1]
set2 =[2,3,1,3,4,2,2,0,0,4]
set3 =[2,2,0,3,4,1,2,3,1,1]
set4 =[1,4,2,4,1,4,2,4,3,3]
set5 =[0,4,1,2,1,4,2,2,3,4]
set6 = [3,4,1,0,0,1,1,0,2,1]
datasets = [[setl],[set2],[set3],[setd],[set5],[setb]]

datasets is now a 10x6 array with all of the data:
IDL> print, datasets

1 1

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1696
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30085&goto=69695#msg_69695
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69695
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVYVVYVYVYVYVYV

3 3

0 4 1 2 1 4 2 2
3 4

3 4 1 0 0 1 1 0
2 1

If we want to print out the histogram of each one, the traditional way
would be
to put a HISTOGRAM command inside a for loop:

datasetsize=size(datasets,/dimen)

ndatasets=datasetsize[1]

minval=min(datasets)

maxval=max(datasets)

for i=0,ndatasets-1 do print, histogram(datasets[*,i], min=minval,
max=maxval)

WrRORNO
AN WE D
P WNWWww
PR NNNN
PWARNPR

But we can do it within a single histogram by adding 5 to all values
in set2

so that it runs from 5 to 9, 10 to all the values in set3 so that it
runs

from 10 to 14, etc.

datasets_new = datasets - minval

dataspan = maxval-minval+1

datasets_new += rebin(transpose(lindgen(ndatasets)*dataspan), size
(datasets,/dimen))

IDL> print, datasets_new

4 1 2 3 1
3

2 2 1 1

7 8 6 8 9
7

7 5 5 9

12 12 10 13 14
11

12 13 11 11

16 19 17 19 16
19

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVYVVYVYVYVYVYV

17 19 18 18

20 24 21 22 21
24

22 22 23 24

28 29 26 25 25
26

26 25 27 26

Now, if we perform a histogram of datasets_new, the 1s from setl don't
interfere

with the 1s from set2 (which are now 6s), or the 1s from set3 (which
are

now 11s), etc. A single histogram will effectively perform a histogram

of each set independently:

h_new = histogram(datasets_new, min=0, max=ndatasets*dataspan-1,
bin=1)

But the 6 histograms are all jammed up against each other inside h!
How
do we get them out?

h_new = reform(h_new, dataspan, ndatasets)

IDL> print, h

WrRORNO
AN WE D
B W WwWww
PR NMNNN
P WARNR

We can compare to the loop version and see that it does indeed give
the
right answer.

"Alright," you say, "but the main reason | use HISTOGRAM is because of
REVERSE_INDICES. How do | get those out?"

If you want the reverse indices for data set j, they can be easily
extracted from the reverse indices of the full histogram. If we
create the histogram as:

h_new = reform(histogram(datasets_new, min=0,
max=ndatasets*dataspan-1, bin=1, $
reverse_indices=ri), dataspan, ndatasets)

then the i-vector (in JD's terminology) for data set j runs from

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVYVVYVYVYVYVYV

rifj*dataspan] to ri[(j+1)*dataspan-1]. These can be used directly
to index the o-vector. To get the original element in data set |
from the value in the o-vector, subtract j*datasetsize[0]. For
example,

where are the 3's in datasets[*,1]?

IDL> print, ri[ri[1*dataspan+3]:ri[l*dataspan+3+1]-1] - 1*datasetsize

[0]
1 3

A more interesting question is "where are the 3's in all of the
datasets"?

This can in fact be done without loops! First, let's look at the loop
version:

for i=0,ndatasets-1 do begin

h = histogram(datasets[*,i], min=minval, max=maxval,
reverse_indices=ril)

if h[3] gt O then print, ril[ril[3]:ril[3+1]-1]
endfor

O 0000wk Ww
O N waou

Using a combination of chunk indexing and "chunk index generation”
(i.e. the solution to Wox's problem of a few weeks ago):

n = h_new][lindgen(ndatasets)*dataspan+3]

h2=histogram(total(n>0,/CUMULATIVE,/int)-1,/

BINSIZE,MIN=0,REVERSE_INDICES=ri2)

nh=n_elements(h2)

chunkind=ri2[0:nh-1]-ri2[0]

I1=((I=lindgen(((nm=ndatasets>(max(n)))),nm) mod nm))[where((l It $
(rebin(transpose(n),nm,nm,/sample))))]

where3 = [[chunkind],[ri[ri[chunkind*dataspan+3]+I1] mod datasetsize

[o11

where3 is now a N3 x 2 array containing the data set and index within
that

data set of every value of 3 (of which there are N3=10 in this
example):

IDL> print, transpose(where3)
0 3
0 5

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVYVYVYVYVYV

\

VVVVVVVVYVVYVVYVYVYVYVYV

1 1

1 3

2 3

2 7

3 8

3 9

4 8

5 0
One caveat with this method is that it can be quite wasteful of
memory.
The full histogram contains dataspan x ndatasets entries, but really
only
ndatasets”"2 of them can be non-zero. If dataspan is much larger than
ndatasets,
as might be the case if the values from each data set don't appear in
the
other data sets, then you might run into memory problems pretty
quickly.
You can try to work around this a bit by using UNIQ to compress the
values
that get fed into the histogram, but it makes it much more complicated
to extract
the original information back out.
-Jeremy.

Sorry but it not at all clear to me that this is a good idea, you have

to search all the datasets to make sure you get no overlaps and
determine the offsets (which have to be added) and may also run into
integer problems for large integer data sets. Comments?

Cheers

Page 5 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

