
Subject: Re: For-loop vs. Dimensional Juggling relative performance
Posted by Chris[6] on Tue, 09 Feb 2010 06:28:04 GMT
View Forum Message <> Reply to Message

On Feb 8, 6:26 pm, Gray <grayliketheco...@gmail.com> wrote:
> Hi folks,
>
> I recently wrote my own version of SRCOR from the NASA Astrolib. Just
> as a reminder, the program takes two lists of 2D coordinates and finds
> matches where the distance is less than some cutoff. SRCOR uses a for-
> loop to step through the first list, comparing the distance of each
> coordinate-pair from every point in the second list. My version uses
> matrix multiplication and dimensional juggling to avoid the for-loop.
>
> For n1 = 2143 and n2 = 2115, SRCOR is faster (0.16 seconds to my 0.53
> on my macbook); however, for n1 = 25 and n2 = 26, mine is faster
> (1.8e-4 seconds to 4.2e-4). Is there any way to predict what kind of
> list sizes will be faster with each method, without making some random
> data and using brute force?
>
> The relevant code is:
>
> SRCOR (dcr2 is the cutoff, option eq 2 ignores the cutoff) -->
>
> FOR i=0L,n1-1 DO BEGIN
> xx = x1[i] & yy = y1[i]
> d2=(xx-x2)^2+(yy-y2)^2
> dmch=min(d2,m)
> IF (option eq 2) or (dmch le dcr2) THEN BEGIN
> ind1[nmch] = i
> ind2[nmch] = m
> nmch = nmch+1
> ENDIF
> ENDFOR
>
> My code -->
>
> lkupx = rebin(indgen(n1),n1,n2) ;make index lookup
> tables, so as not to
> lkupy = rebin(transpose(indgen(n2)),n1,n2) ;worry about confusing
> 1D vs 2D
> ;use matrix multiplication and dim. juggling to fast compute
> sqrt((x2-x1)^2+(y2-y1)^2)
> dists =
> sqrt(rebin(x1^2.+y1^2,n1,n2)+rebin(transpose(x2^2.+y2^2),n1, n2)-2*(x1#x2+y1#y2))
> min_x = min(dists,xmatch,dimension=2) ;find the minima in both
> directions...
> min_y = min(dists,ymatch,dimension=1) ;this is given in 1D indices

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6539
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30131&goto=69743#msg_69743
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69743
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> xm = lkupy[xmatch] ;convert to 2D indices
> ym = lkupx[ymatch]
> ;remove elements w/ distance greater than max_dist, and where the
> two lists don't match
> nomatch_x = where(ym[xm] ne indgen(n1) or min_x gt max_dist, nmx)
> if (nmx gt 0) then xm[nomatch_x] = -1
> nomatch_y = where(xm[ym] ne indgen(n2) or min_y gt max_dist, nmy)
> if (nmy gt 0) then ym[nomatch_y] = -1
>
> Thanks!!
> --Gray (first time poster)

There's no easy way to figure this out (and it will vary from machine
to machine). You would have to develop some sort of model for
execution time, which would look something like

time = A * lines_of_code_to_execute + B * number_of_math_operations +
f(total_memory_creation_needed)

IDL's speed penalty comes from the fact that A is largeish
(quasi-)constant, since IDL interprets and runs each line individually
(including every iteration in a loop). B is some constant which
depends on the speed of your processor, and f is some function that
models how efficient your operating system is at allocating memory for
your big arrays. A, B, and f are all machine dependent, and would have
to be determined empirically.

Of course, the most efficient approach of all is to realize that the
time difference between the two methods is .5 seconds, and that it's
much faster to just choose one method and run with it :)

chris

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

