
Subject: For-loop vs. Dimensional Juggling relative performance
Posted by Gray on Tue, 09 Feb 2010 04:26:08 GMT
View Forum Message <> Reply to Message

Hi folks,

I recently wrote my own version of SRCOR from the NASA Astrolib. Just
as a reminder, the program takes two lists of 2D coordinates and finds
matches where the distance is less than some cutoff. SRCOR uses a for-
loop to step through the first list, comparing the distance of each
coordinate-pair from every point in the second list. My version uses
matrix multiplication and dimensional juggling to avoid the for-loop.

For n1 = 2143 and n2 = 2115, SRCOR is faster (0.16 seconds to my 0.53
on my macbook); however, for n1 = 25 and n2 = 26, mine is faster
(1.8e-4 seconds to 4.2e-4). Is there any way to predict what kind of
list sizes will be faster with each method, without making some random
data and using brute force?

The relevant code is:

SRCOR (dcr2 is the cutoff, option eq 2 ignores the cutoff) -->

 FOR i=0L,n1-1 DO BEGIN
 xx = x1[i] & yy = y1[i]
 d2=(xx-x2)^2+(yy-y2)^2
 dmch=min(d2,m)
 IF (option eq 2) or (dmch le dcr2) THEN BEGIN
 ind1[nmch] = i
 ind2[nmch] = m
 nmch = nmch+1
 ENDIF
 ENDFOR

My code -->

 lkupx = rebin(indgen(n1),n1,n2) ;make index lookup
tables, so as not to
 lkupy = rebin(transpose(indgen(n2)),n1,n2) ;worry about confusing
1D vs 2D
 ;use matrix multiplication and dim. juggling to fast compute
sqrt((x2-x1)^2+(y2-y1)^2)
 dists =
 sqrt(rebin(x1^2.+y1^2,n1,n2)+rebin(transpose(x2^2.+y2^2),n1, n2)-2*(x1#x2+y1#y2))
 min_x = min(dists,xmatch,dimension=2) ;find the minima in both
directions...
 min_y = min(dists,ymatch,dimension=1) ;this is given in 1D indices
 xm = lkupy[xmatch] ;convert to 2D indices

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30138&goto=69745#msg_69745
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69745
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ym = lkupx[ymatch]
 ;remove elements w/ distance greater than max_dist, and where the
two lists don't match
 nomatch_x = where(ym[xm] ne indgen(n1) or min_x gt max_dist, nmx)
 if (nmx gt 0) then xm[nomatch_x] = -1
 nomatch_y = where(xm[ym] ne indgen(n2) or min_y gt max_dist, nmy)
 if (nmy gt 0) then ym[nomatch_y] = -1

Thanks!!
--Gray (first time poster)

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

