
Subject: Re: find max in 3D array -- slow
Posted by Maxwell Peck on Mon, 12 Apr 2010 10:36:04 GMT
View Forum Message <> Reply to Message

On Apr 12, 6:07 pm, Maxwell Peck <maxjp...@gmail.com> wrote:
> On Apr 12, 7:41 am, Maxwell Peck <maxjp...@gmail.com> wrote:
>
>
>
>> On Apr 11, 4:23 am, FÖLDY Lajos <fo...@rmki.kfki.hu> wrote:
>
>>> On Sat, 10 Apr 2010, Timothy W. Hilton wrote:
>>>> Hello IDL users,
>
>>>> I have a 1200x1200x2900 array of floats. The dimensions correspond to
>>>> latitude x longitude x time. I need to find the maxium at each
>>>> location -- that is, I need the 1200x1200 array containing the max
>>>> along the 3rd dimsion. IDL takes almost 3 minutes to do this on my
>>>> system. This seemed slow. I compared it with Matlab, which took ten
>>>> seconds. Is there a better way to search for the maxima using IDL?
>
>>>> The demo code I used to compare IDL and Matlab is below (with output).
>
>>>> I'm wondering if I ought to switch to Matlab. I just spent a couple
>>>> of days writing IDL code to read my data, so I'd rather not.
>
>>>> Many thanks,
>>>> Tim
>
>>>> --
>
>>>> Timothy W. Hilton
>>>> PhD Candidate, Department of Meteorology
>>>> The Pennsylvania State University
>>>> 503 Walker Building, University Park, PA 16802
>>>> hil...@meteo.psu.edu
>
>>>> ========
>>>> scratch.pro:
>
>>>> foo = randomu(0, 1200, 1200, 2920)
>>>> PRINT, systime()
>>>> foo_max = max(foo, DIMENSION = 3)
>>>> PRINT, systime()
>>>> END
>
>>>> IDL> .run scratch
>>>> % Compiled module: $MAIN$.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7006
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30381&goto=70466#msg_70466
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70466
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> Sat Apr 10 10:44:44 2010
>>>> Sat Apr 10 10:47:36 2010
>>>> IDL>
>
>>>> ========
>>>> scratch.m:
>
>>>> foo = rand(1200,1200,2920);
>>>> fprintf('%s\n', datestr(now()));
>>>> foo_max = max(foo, [], 3);
>>>> fprintf('%s\n', datestr(now()));
>
>>>> >> scratch
>>>> 10-Apr-2010 10:42:45
>>>> 10-Apr-2010 10:42:55
>
>>> I think that randomu(0, 1200,1200,2920) should be rand(2920, 1200, 1200)
>>> in Matlab (an array of 2920 rows x 1200 columns x 1200 something). The
>>> memory layout makes a big difference.
>
>>> regards,
>>> lajos
>
>> That's probably a good point, maybe storing the dataset in the
>> equivalent of a Byte Interleaved by Pixel storage order would speed
>> things up considerably.
>
> It certainly does seem to be memory layout related. Here are some
> numbers.
>
> foo = randomu(seed, 100, 100, 2900)
>
> foo_max = max(foo, DIMENSION = 3)
> This takes 0.36 seconds
>
> Reforming and transposing the array as follows:
> h = transpose(reform(foo,100*100,2900))
>
> Then finding the max along the row dimension
> k=max(h,dimension=1)
> gives 0.11 seconds. This is NOT including the initial transpose/reform
> (or one after). This adds considerable time. There might be a smarter
> way to do this bit...
>
> Not using the transpose and finding the max along the columns gives
> similar times to using the dimension=3 as done initially.
>
> Clearly having the values stored contiguous in memory as it is across

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> the rows gives much faster results. I'm not sure if there are paging
> issues happening as well though, you're using a pretty big array!
>
> I'm not sure what the best way in actual application is to do this in
> IDL, perhaps there is opportunity when the file is being read in to
> store it in this way as it's probably I/O limited anyway at this
> point. Someone smarter on here might have a better solution..
>
> Max
>
> pro testsort
> l=100L
> c=2900L
>
> foo = randomu(seed, l, l, c)
> t=systime(1)
> foo_max = max(foo, DIMENSION = 3)
> PRINT,systime(1) -t
>
> h = transpose(reform(foo,l*l,c))
> t=systime(1)
> k=max(h,dimension=1)
> PRINT,systime(1) -t
> j=reform(k,l,l)
>
> print,'make sure nothing stupid has happened', total(j-foo_max)
>
> END

actually use transpose(foo,[2,0,1]) to convert the file to BIL and
then find the max along dimension=1 instead of the reform stuff

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

