
Subject: Re: Procedures and Functions - Checking Input Data for Validity
Posted by Aram Panasenco on Sat, 17 Apr 2010 08:09:05 GMT
View Forum Message <> Reply to Message

On Apr 16, 9:15 pm, Craig Markwardt <craig.markwa...@gmail.com> wrote:
> On Apr 16, 11:27 pm, Aram Panasenco <panasencoa...@gmail.com> wrote:
>
>
>
>
>
>> I tried searching IDL Help for a way to simplify checking for validity
>> of passed in arguments, but the only thing I was able to find was
>> documentation of some C macros (please correct me if there actually is
>> something that can easily allow me to validate function/procedure
>> input). So I thought of a way to be able to quickly check if the data
>> falls into a certain type and range.
>> I propose creating a function that checks input for validity in
>> accordance with a string of rules. You can think of it as an analogue
>> to a FORMAT string. The data and the string both get passed into a
>> function called something along the lines of VALIDATE_INPUT
>> (preferably something shorter). The function returns 1 if the data
>> matches the rules defined by the string, and 0 if it doesn't. Here's
>> what I think the syntax of the string should be:
>
>> [-]T[-][R]
>
>> Where:
>> - is an optional flag, dictating whether the types specified after it
>> are inclusive (if the [-] flag is not set) or exclusive (if the [-]
>> flag is set)
>> T is a list of type codes/names separated by commas. The [-] flag
>> determines whether T specifies what the data should ("inclusive") or
>> shouldn't ("exclusive") be like.
>> - is a second optional flag, dictating whether the range(s) specified
>> after it should be exclusive or inclusive
>> R is an optional range specification. It can be written in standard
>> mathematical notation (round or square braces)
>
>> Type codes/names:
>> Elements of T can be either type codes from 0 to 15 or type names such
>> as UNDEFINED, DOUBLE, or POINTER. Since it is very easy for a rule
>> processor to differentiate between the two, I think it can be ok to
>> use either one.
>> All the type codes and names can be found in the documentation for the
>> SIZE function in the IDL reference guide.
>
>> Examples of T:

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7048
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30424&goto=70483#msg_70483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> " - NaN"
>> All data that contains NaN will return 0
>> " Double, Float "
>> Only Double and Float data will return 1
>> " - 12,13,14,15"
>> All unsigned number types will return 0
>
>> Range Notation:
>> Range defines the numerical boundaries of the data. Range
>> specification will be ignored for non-numerical data. Range will be
>> written in the form (MIN,MAX) or (N), where the braces can be either
>> round or square. A round brace indicates an open boundary (the number
>> is not part of the range), and a square brace indicates a closed
>> boundary (the number is part of the range). The range will accept
>> numbers OR the IDL constant system variables !pi, !dpi, !dtor, and !
>> radeg OR the keyword !infinity (not an actual IDL keyword).
>
>> Examples of R:
>> " (-!pi , !pi) "
>> All data within the range, excluding -pi and pi, will return 1
>> " (0,100] "
>> All data within the range, excluding 0, will return 1
>> " - (0) "
>> For single numbers, it won't matter whether you use round or curly
>> brackets.
>> In this case, all data that's not equal to 0 will return 1
>> " [-100,0), (0,100] "
>> All data from -100 to 100, excluding 0, will return 1
>> " - (0,!infinity)"
>> All data from 0 to infinity, excluding 0, will return 0 (all
>> numbers greater than 0 will return 0)
>> Note that it's ok, while not recommended (for good math's sake),
>> to brace !infinity with a square bracket
>
>> Example of using the function (named VALIDATE_INPUT here):
>
>> ; I have a spherical polygon that I want to
>> ; move around while keeping maximum
>> ; precision. The polygon's spherical
>> ; coordinates are kept in a variable called
>> ; SphVertices, and I don't want the longitude
>> ; values to go out of the range (0,2*!pi) and
>> ; the latitude values to go out of range
>> ; (-!pi,!pi). I can use VALIDATE_INPUT:
>
>> pro RenderPolygon, sphVertices
>> e = VALIDATE_INPUT(sphVertices[0,*] , "DOUBLE (0,2*!pi)") and $
>> VALIDATE_INPUT(sphVertices[1,*] , "DOUBLE (-!pi,!pi)")

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> if (~e) then HandleError("INVALID INPUT: Polygon Vertices")
>> ...
>> ...
>> end
>
>> ; I have a routine that controls a list of files.
>> ; The routine should never be passed a
>> ; negative number or a non-integer. I can
>> ; use VALIDATE_INPUT:
>
>> function SelectFileFromList, index
>> e = VALIDATE_INPUT(index , "INT,UINT [0,!infnity)")
>> if (~e) then HandleError("INVALID INPUT: Invalid Index for
>> Filelist")
>> ...
>> ...
>> end
>
>> Please share your thoughts on a function like that. Would it be
>> worthwhile to code something like that. Can you think of any
>> improvements?
>
> Parameter checking is certainly an area that IDL deserves better
> support.
>
> There is an IDL Astronomy Library procedure called ZPARCHECK which
> does parameter type and dimension checking but not range checking,
> which might be a starting point.
>
> I think your proposal is quite thorough. However, my opinion is that
> writing a parser of your "format string", which handles all
> possibilities, will be pretty difficult. In essence, you would spend
> a lot of time validating your validator. Beyond that, string parsing
> is not IDL's forte', and such a routine may cause performance
> issues.
>
> My opinion is that it would be better to take advantage of IDL's
> existing keyword parsing.
> For example something like this,
> e = validate_input(X, /float, /double)
> e = validate_input(X, min=5, max=20)
> e = validate_input(X, /invert, value=0)
>
> A weakness of ZPARCHECK and your approach is that there is no way to
> specify a default value. The parameter validation stage is also the
> obvious stage to optionally attach a default value if no value is
> specified explicitly.
>

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Also, what to do with vector values? Most routines in IDL are
> designed to accept vector arguments, so one would probably want to
> consider the ramifications of that more carefully.
>
> Best wishes,
> Craig

I think that as far as the function should be concerned, even one
"garbage" value in a matrix should make it return 0. Therefore, all
the range/value testing will be done on each value of the matrix
(probably using the WHERE() function).

I see your point and I have to agree that it probably would've been a
little too hard to process parameters through a string, especially as
far as processing elements like "2*!pi". However, I personally find
using procedures/functions that include a lot of keywords extremely
hard to read (since there's no way of grouping them). I think
extremely clear readability is very important for a function like
that, because it is practically the interface of the routine. I am
going to adopt your idea of using keyword parsing, but with a little
tweak. I think that a lot of /double,/string,/float,etc. keywords in
your suggestion (plus a keyword like /exclude) can still be replaced
by a string containing the names/codes of the keywords. Compare:

e = VALIDATE(data, /exclude, /double,/float,/int)
 to
e = VALIDATE(data, ex_type="double,float,int")

 and

e = VALIDATE(data, /struct,/object)
 to
e = VALIDATE(data, in_type="struct,object")

It's not very hard to process an in_type/ex_type string in 4 simple
steps:
1) Remove whitespace (STRCOMPRESS)
2) Convert to uppercase (STRUPCASE)
3) Split by commas (STRSPLIT)
4) Run a loop for each substring: Identify if it's a type code or type
name (using FIX and ON_IOERROR) and compare each against the data's
type code and name (EQ or STRCMP).

The argument against using strings to process range is strong, though.
There's no way I am going to be able to imitate the way IDL processes
constants (2*!pi, 3D, etc.). Besides, what if the user wants to use a
variable name? No, I am going to have to use keywords: in_range,
ex_range, in_value, ex_value. in_range and ex_range are going to be

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

2xN arrays of numbers - representing inclusive MIN-MAX pairs, and
in_value and ex_value are going to be 1xN arrays of numbers -
representing inclusion and exclusion values.

e = VALIDATE(data, in_range=[-100,100]) ; <-- Range from -100 to 100
e = VALIDATE(data, in_range=[-!pi,!pi], ex_value = [-!pi,0,!pi]) ; <--
Range from -pi to pi, excluding 0 and the endpoints

Specifying the default value for data can be important in non-critical
applications. DEFAULT should definitely be a keyword for the
validator. Note that with the DEFAULT keyword set, the function always
returns 1.

e = VALIDATE(data, ex_range="NaN", default=0)

All in all it comes down to the following:

The VALIDATE function (I decided to remove the _input part, because
the user might want to use it not just for processing input values)
takes in the mandatory data parameter and several optional keywords:
 - in_type and ex_type : strings that contain (inclusive or exclusive)
type codes or names for the data (separated by commas). If both
keywords are passed, in_type is given priority.
 - in_range and ex_range : 2xN arrays that contain N MIN-MAX pairs
specifying the inclusive or exclusive numeric ranges. Apply to
numerical data only.
 - in_value and ex_value : 1xN arrays that contain N inclusive or
exclusive numeric values. Apply to numerical data only.
 - default : value used to replace all invalid data. If the default
keyword is set, VALIDATE always returns 1.

Examples:

;Original example 1
;(RenderPolygon)

pro RenderPolygon, sphVertices
 e = VALIDATE(sphVertices[0,*], in_type="double", in_range=[0,2*!
pi], ex_value=[0,2*!pi]) and $
 VALIDATE(sphVertices[1,*], in_type="double", in_range=[-!pi,!
pi], ex_value=[-!pi,!pi])
 if (~e) then HandleError("INVALID INPUT: Polygon Vertices")
 ...
 ...
end

;Original example 2
;(SelectFileFromList)

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

function SelectFileFromList, index
 e = VALIDATE(index , in_type="int", in_range =
[0,N_LISTELEMENTS-1])
 if (~e) then HandleError("INVALID INPUT: Invalid Index for
Filelist")
 ...
 ...
end

;More Examples:
e = VALIDATE(denominator, ex_value=0)
e = VALIDATE(somedata, ex_type = "0,1,6,8,9,10,11", ex_range = [-1,1],
in_value = 0)
e = VALIDATE(magfield, ex_type="NaN",default=min(magfield, /NaN))

Thank you Craig for helping me improve (I think) on my original idea
Please continue to post feedback! What other changes/fixes can I make
to the design before I start coding away?

~Aram Panasenco

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

