Subject: Re: Multi-core techniques
Posted by wita on Fri, 16 Apr 2010 15:28:15 GMT

View Forum Message <> Reply to Message

Dear Bernat,

There is actually an example included in the header of
cgi_process_manager.pro, but | will try to explain this in more
detail.

To start with, you need to to split your calculations into a set of
independent tasks. Usually, this means splitting it by parameter
ranges, by date, by region, by tile or whatever. These tasks need to
be coded as an array of structures. So if you want to split your
tasks over various inputfiles you could do something like this:

tasks = Replicate({inputfile:""}, <number_of_input_file>)
tasks[0].inputfile="datafile1.dat"

tasks[1].inputfile="datafile2.dat"

etc.

Then you start "cgi_process_manager" and you provide "tasks" as
parameter. The process manager will determine your machine setup and
start as many bridges as it can find CPUs. Next it will start the

task manager which keeps track of which tasks have been processed
and which not. The idea behind it, is that you can separate the logic

of handling tasks from the execution of tasks. For example, if you

have an IDLDataminer license you could easily extend the taskmanager
to read the tasks from a database table. | actually have a python
implementation of such a task manager that | use a lot.

cgi_process_manager will now try to execute the tasks on the
IDL_IDLBridges that it has initialized. The first problem here is

that

you can only send simple variables directly over an IDL_IDLBridge
(scalars, arrays), no structures or objects. The workaround | chose
is

to first save the data in the task structure to a temporary .SAV

file.

The name of this .SAV file is send over to the IDL_IDLBridge and the
procedure "cgi_process_client" is executed on the bridge. The
Cgi_process_client procedure restores the contents of the .SAV file
and your parameters in the task will be available on the bridge as a
variable "task".

The cgi_process_manager will continuously monitor the availability
of the bridges and start new processes when a bridge comes available.

Finally, there is one pitfall here: how does the cgi_process_client

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5275
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30401&goto=70514#msg_70514
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70514
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

procedure know the name of the procedure/function it has to start?
In fact, in the current implementation, it doesn't and you need to
provide it yourself by hardcoding it into the cgi_process_client
procedure. So in this example, line 70 of cgi_process_client.pro
needs to be changed into something like:
my_cpu_intensive_process, inputfile=task.inputfile

| may change this in the future, by coding the execution string into
the task structure itself and use something like:
Execute, task.execstring

A few further remarks

- The process_manager does not collect output from the client

processes.

So your client process must contain logic to store its result.

- The approach with the .SAV seems a bit tricky but | found it to be
quite robust. | also looked at the possibility to use shared memory
between bridges but that is tricky as well. Moreover, in order to
map the shared memory on the bridge you first need to know the

layout
of the structure, which you cannot send over the bridge as well. So
you end up with a chicken-and-egg problem.

- Split your tasks in a couple of large chunks instead of using many
small tasks. Executing each task involves a small overhead, but

this
can become significant if you have to execute many tasks.

Hope this helps.

Allard

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

