Subject: Re: x-v offsets Posted by Jeremy Bailin on Thu, 20 May 2010 04:59:26 GMT

View Forum Message <> Reply to Message

```
On May 20, 2:56 am, Jeremy Bailin <astroco...@gmail.com> wrote:
> On May 19, 9:38 pm, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>
>
>
>
  On May 19, 7:45 pm, Gray <grayliketheco...@gmail.com> wrote:
>>> On May 19, 2:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>>> On May 18, 8:29 pm, Gray <grayliketheco...@gmail.com> wrote:
>>>> > Hi all,
>>>> > This is a variation on the 2D matching problem that I'm having trouble
>>>> > algorithm-ing (to coin an incredibly awkward word).
>>> > I have two sets of XY coordinates of unequal length (i.e., x1/y1/n1,
>>>> x2/y2/n2, n1 ne n2). I want to find offsets in both X and Y that
>>>> > match the two sets as closely as possible (there will obviously be
>>>> > some unmatched coordinates in the larger set). I'm just looking for
>>> > constant offsets, so basically (for n1 < n2) x1 + Cx -> x2, y1 + Cy ->
>>> > y2, with some elements of x2 and y2 being unmatched. How do I go
>>>> > about doing this? I don't think I can use JD's MATCH 2D because I
>>>> > don't know a priori what my matching radius is.
>>>> > Any suggestions? Thanks, as always!
>>>> > --Gray
>
>>>> I would be tempted to create a 2D histogram based on each set and then
>>> cross-correlate them.
>>>> -Jeremy.
>>> How do you turn the cross-correlation into offsets? And, how do you
>>> intelligently choose a binsize for the histogram?
>> The first question is the easier one. ;-)
>
>> IDL> d = dist(5,5)
>> IDL> a = fltarr(25,25)
>> IDL> b = fltarr(25,25)
```

```
>> IDL> a[4,7] = d
>> IDL> b[0.0] = d
>> IDL> xcor = fft(/inverse, fft(a)*fft(b,/inverse))
>> IDL> maxcor = max(abs(xcor),loc)
>> IDL> print, array_indices(a,loc)
>>
>
>> Now, it's easy here because I know that there's one perfect matching
>> location - it may be more ambiguous in a real situation (in which case
>> you'll probably to assess the magnitude of all of the peaks within
>> xcor to see if there are multiple plausible solutions). Also note that
>> the answer wraps around - i.e. you should treat a value of 24 here as
>> -1.
>
>> As for the binsize, it depends on your application. Ideally you would
>> make the bins as small as the precision you expect to be able to
>> achieve in determining the translational offset given your data (or
>> even better, a factor of two smaller) - but if that means that your 2D
>> histograms have one million bins in each direction then that won't
>> work. ;-) So in that case, I would go for a two-step process: in step
>> 1, use the cross-correlation of the entire image using a coarse grid
>> to get in the right ballpark. Then, if you think you should be good to
>> within a length L, do a finer resolution cross-correlation just using
>> a box of length L around each point (you might be able to ram the
>> boxes all up against each other in a big image so you can do the cross-
>> correlation of them all at once - never tried it).
>
>> -Jeremy.
>
```

- > Here's a quick implementation. As you can see, it gets to within half > of the
- > input scatter. I'm sure you could do quite a bit better by, instead of
- > just using the peak location of the cross-correlation, fit a 2D
- > Gaussian
- > to it to find the peak location to well within one bin width.

Here's a more refined version that uses the Gaussian fit. Does very well as long as the scatter doesn't reach the average interpoint spacing of x2,y2 (0.045 in this example - at which point, the problem is no longer very well-defined).

Tests:

scatter=0.005:

Input offsets: 0.349760 -0.151510 Measured offsets: -0.152183 0.349591 Delta/scatter: 0.0338316 0.134644

scatter=0.01:
Input offsets: 0.34
Measured offsets:

0.349760 -0.151510 ets: 0.350363 -0.151164

Delta/scatter: 0.0603169 0.0345916

scatter=0.02:

Input offsets: 0.349760 -0.151510 Measured offsets: 0.341009 -0.149584 Delta/scatter: 0.437570 0.0963129

scatter=0.03:

% CURVEFIT: Failed to converge- CHISQ increasing without bound. % CURVEFIT: Failed to converge- CHISQ increasing without bound.

Input offsets: 0.349760 -0.151510 Measured offsets: 0.342206 -0.185512 Delta/scatter: 0.251811 1.13339

scatter=0.05:

% CURVEFIT: Failed to converge- CHISQ increasing without bound.

Input offsets: 0.349760 -0.151510 Measured offsets: -0.101709 -0.336232

Delta/scatter: 9.02937 3.69445

Code:

seed=43l n1 = 100ln2 = 500offset = [0.34976, -0.15151]scatter = 0.01subset = floor(randomu(seed,n1)*n2) x2 = randomu(seed, n2)y2 = randomu(seed, n2)x1 = x2[subset] + offset[0] + scatter*randomn(seed,n1)v1 = v2[subset] + offset[1] + scatter*randomn(seed,n1) bin = scatter xrange = minmax([x1,x2])xrange[0] -= bin & xrange[1] += bin yrange = minmax([y1,y2])yrange[0] -= bin & yrange[1] += bin image1 = hist 2d(x1, y1, min1=xrange[0],max1=xrange[1],bin1=bin, \$ min2=yrange[0],max2=yrange[1],bin2=bin)

```
image2 = hist_2d(x2, y2, min1=xrange[0],max1=xrange[1],bin1=bin, $
 min2=yrange[0],max2=yrange[1],bin2=bin)
imagesize = size(image1,/dimen)
: cross-correlation via convolution theorem
xcor = fft(/inverse, fft(image1)*fft(image2,/inverse))
maxcor = max(abs(xcor), loc)
maxindex = array_indices(image1,loc)
; to fit gaussian, need to take periodicity into account
axcor = abs([[xcor,xcor,xcor],[xcor,xcor,xcor],[xcor,xcor,xcor]])
boxlen=7; size of box around peak which to fit
halfbox=boxlen/2
; put into middle image of 3x3
maxindex_periodic = maxindex + imagesize
aa = axcor[maxindex[0]-halfbox:maxindex[0]+halfbox, $
 maxindex[1]-halfbox:maxindex[1]+halfbox]
; 2D gaussian fit of boxed region
params = [0.,max(aa),1.,1.,halfbox,halfbox,0.]
yfit = gauss2dfit(aa, params)
; put back into original coordinates
refinedindex = params[4:5]-halfbox+maxindex
; deal with periodicity
for i=0,1 do if refinedindex[i] gt imagesize[i]/2 then $
 refinedindex[i] -= imagesize[i]
measuredoffset = refinedindex * bin
print, 'Input offsets:',offset
print, 'Measured offsets:',measuredoffset
print, 'Delta/scatter:',abs(measuredoffset-offset)/scatter
!p.multi=[0,2,1]
red=fsc_color('red')
plot, psym=3, xrange=xrange, yrange=yrange, x2, y2, title='Original'
oplot, psym=3, x1, v1, color=red
plot, psym=3, xrange=xrange, yrange=yrange, x2, y2, title='Matched'
oplot, psym=3, x1-measuredoffset[0], y1-measuredoffset[1], color=red
end
-Jeremy.
```