Subject: Re: A Contour Tracking Problem Posted by Chip Eastham on Wed, 02 Jun 2010 13:56:36 GMT

View Forum Message <> Reply to Message

On Jun 2, 9:04 am, jgrimm...@yahoo.com wrote:

- > I would very appreciate if I could get help on this problem. It is
- > mostly an imaging problem, but may involve some mathematical
- > issues. Hence the crosspost. Rather than be very general, I
- > will explain the actual example I am confronted with to keep
- > things simpler and clearer.

>

- > I have an image (digitally acquired), that represents the
- > contours of an unknown function. In this particular case, the
- > contours are interference fringes of a thin film and hence
- > represent contours of constant film thickness. I now wish
- > to get a map of the actual thickness, given that I know
- > the real thickness at some reference point and I can somehow
- > differentiate between going 'uphill' vs 'downhill'. This is just
- > the reverse of the usual plotting problem where one *knows*
- > a function z = z(x, y) and then gets a contour plot of z.
- > Assume that we can process the image to the point that
- > we have just black or white regions and so we can clearly
- > determine when a fringe is crossed while moving along a
- > particular direction.

>

- > While one can keep track of contour crossings as one moves
- > along a straight line, the part that I cannot get a handle on
- > is how to keep track of the contours and know when one is
- > back at a contour that one has already crossed. In my case,
- > the contours are closed and there are multiple local maxima
- > and minima to deal with.

>

> Any pointers will be appreciated.

_

> Thanks.

>

> J. Grimmond

Do you have colors of polarization to tell when you are going "uphill" vs. "downhill"?

regards, chip