Subject: Re: Locating sequence of bytes within binary file
Posted by JDS on Thu, 17 Jun 2010 17:48:57 GMT

View Forum Message <> Reply to Message

On Jun 17, 4:03 am, medd <med...@googlemail.com> wrote:

> | am not an expert, but when | explain IDL to newbies | always say

> that it is a "matrix-oriented language"”, with all possible operations

> you can imagine on arrays. But looking for more than one consecutive
> value within an array seems to be too hard...

As usual, we can (over-)use IDL's array strengths to brute-force this
using REBIN and dimensional TOTAL.:

nh=1000000L

nn=20b
haystack=byte(randomu(sd,nh)*256)
start=long(randomu(sd)*(nh-nn))
needle=haystack|[start:start+nn-1]

targ=[nn,ceil(float(nh)/nn)]
search=make_array(/BYTE,targ,/NOZERO)
quill=rebin(needle,targ,/SAMPLE)

for off=0,nn-1 do begin
search[0]=shift(haystack,-off)
matches=where(total(search eq quill,1,/PRESERVE_TYPE) eq nn,cnt)
if cnt gt O then break

endfor

match=cnt gt 0?matches[0]*nn+off:-1

If you are interested in more than just the first match, simply omit
the break statement, and accumulate a list of match locations (or
increment a match count). It's limited to 256 byte needles, but that
could be fixed by substituting PRODUCT for TOTAL (at a very slight
speed penalty). It's reasonably fast, though of course cannot touch
the speed of a true Boyer-Moore string search. | tried it on the same
data set using INDEX in perl and found it roughly 40x faster.

Now for the really disappointing news: as is often found, brute-
forcing, while emphasizing IDL's strengths, often comes with a penalty
compared to more efficient algorithms. | find that STRPOS in IDL is
at least 100x faster, likely because it uses an efficient string

search algorithm internally. But, as you notice, IDL won't allow null
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characters (0Ob) in a string (probably as a questionable concession to
0-delimited C strings).

That motivates another deeply unsatisfying, but resoundingly faster
(20-50x) option: simply replace all Ob's with 1b's in both input byte
array and search array, and just double-check for spurious matches as
you go:

function binpos,haystack,needle
nn=n_elements(needle)

sn=string(needle>1b)
sh=string(haystack>1b)

pos=-1
repeat begin
pos=strpos(sh,sn,pos+1)
if pos ne -1 && array_equal(haystack[pos:pos+nn-1],needle) then
break
endrep until pos eq -1
return,pos
end

In random arrays | find false positives are quite rare for search
array lengths greater than a few. Of course, your data probably isn't
random.

We might also lobby ITT to let STRPOS and its sort accept byte arrays
(since frankly there is very little difference between them
internally).

JD
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