Subject: Re: Locating sequence of bytes within binary file
Posted by JDS on Thu, 17 Jun 2010 17:48:57 GMT

View Forum Message <> Reply to Message

On Jun 17, 4:03 am, medd <med...@googlemail.com> wrote:

> | am not an expert, but when | explain IDL to newbies | always say

> that it is a "matrix-oriented language"”, with all possible operations

> you can imagine on arrays. But looking for more than one consecutive
> value within an array seems to be too hard...

As usual, we can (over-)use IDL's array strengths to brute-force this
using REBIN and dimensional TOTAL.:

nh=1000000L

nn=20b
haystack=byte(randomu(sd,nh)*256)
start=long(randomu(sd)*(nh-nn))
needle=haystack|[start:start+nn-1]

targ=[nn,ceil(float(nh)/nn)]
search=make_array(/BYTE,targ,/NOZERO)
quill=rebin(needle,targ,/SAMPLE)

for off=0,nn-1 do begin
search[0]=shift(haystack,-off)
matches=where(total(search eq quill,1,/PRESERVE_TYPE) eq nn,cnt)
if cnt gt O then break

endfor

match=cnt gt 0?matches[0]*nn+off:-1

If you are interested in more than just the first match, simply omit
the break statement, and accumulate a list of match locations (or
increment a match count). It's limited to 256 byte needles, but that
could be fixed by substituting PRODUCT for TOTAL (at a very slight
speed penalty). It's reasonably fast, though of course cannot touch
the speed of a true Boyer-Moore string search. | tried it on the same
data set using INDEX in perl and found it roughly 40x faster.

Now for the really disappointing news: as is often found, brute-
forcing, while emphasizing IDL's strengths, often comes with a penalty
compared to more efficient algorithms. | find that STRPOS in IDL is
at least 100x faster, likely because it uses an efficient string

search algorithm internally. But, as you notice, IDL won't allow null

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6762
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30758&goto=71379#msg_71379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

characters (0Ob) in a string (probably as a questionable concession to
0-delimited C strings).

That motivates another deeply unsatisfying, but resoundingly faster
(20-50x) option: simply replace all Ob's with 1b's in both input byte
array and search array, and just double-check for spurious matches as
you go:

function binpos,haystack,needle
nn=n_elements(needle)

sn=string(needle>1b)
sh=string(haystack>1b)

pos=-1
repeat begin
pos=strpos(sh,sn,pos+1)
if pos ne -1 && array_equal(haystack[pos:pos+nn-1],needle) then
break
endrep until pos eq -1
return,pos
end

In random arrays | find false positives are quite rare for search
array lengths greater than a few. Of course, your data probably isn't
random.

We might also lobby ITT to let STRPOS and its sort accept byte arrays
(since frankly there is very little difference between them
internally).

JD

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

