Subject: Re: Smoothing Spline -- any existing efficient routines? Posted by d.poreh on Thu, 12 Aug 2010 13:53:46 GMT

View Forum Message <> Reply to Message

On Aug 12, 6:25 am, "Neil B." <neil.h.bh...@gmail.com> wrote: > Hi,

>

- > I am trying to find the continuum of various stellar spectra. The
- > noise of these spectra are fairly non-intrusive and there aren't many
- > outliers (spikes due to calibration errors etc.).

>

> The arrays I am working with contain about 40000+ elements.

>

- > I want to essentially turn the spectra into some linear function, so I
- > can remove any curvature in the observed data.

>

- > I know of the procedure Spline_smooth (http://astro.uni-tuebingen.de/
- > software/idl/astrolib/math/spline_smooth.html). However, this
- > function as the restriction tag in its header suggests, is extremely
- > slow.... It takes about 40 minutes to process a 1000 element sub-
- > array. The speed issues in this program are due to the fact that it
- > does not use Cholesky Decomposition. Further more, when I try the
- > routine on the 40000 element array I receive an error message that
- > informs me that there are too many elements in the array...

>

> Does anyone know of an efficient version of this routine.

>

> Or is there a better way for determining the continuum of a spectrum?

>

> Thanks very much in advance.

You can use SAVGOL filter for smoothing. It is a built in function and quiet fast.

From help:

The SAVGOL function returns the coefficients of a Savitzky-Golay smoothing filter, which can then be applied using the CONVOL function. The Savitzky-Golay smoothing filter, also known as least squares or DISPO (digital smoothing polynomial), can be used to smooth a noisy signal.

Cheers

Dave