Subject: Re: time series analysis - request for ideas? Posted by R.G. Stockwell on Tue, 21 Sep 2010 16:35:59 GMT

View Forum Message <> Reply to Message

"a" <oxfordenergyservices@googlemail.com> wrote in message news:da83c4e7-1249-4a7e-8138-90bce4e37df0@I17g2000vbf.google groups.com...

Hi

- > I have a number of experimental time-series data (say 100) each of
- > which consists of a number of readings at 10 second intervals for a
- > year.

- > I want to simulate many thousand of these time-series but they must
- agree statistically with the experimental data.

- Does anybody have any ideas of how this might be done or the types of
- fields that this problem has come up in?

>

My initial thoughts were >

>

- > a) the distribution of values of the simulated must agree with
- > experimental
- > b) the distribution of (the change in each 10 seconds) must agree with
- > experimental
- > c) the autocorrelations of the simulation must agree with experimental

>

- > The experimental data does not look like it can be used with fourier
- > analysis there are lots of spikes, lots of plateaus and lots of very
- > low contiguous values etc.

>

Any ideas appreciated

>

Cheers!

> Russ

I would fit to find what kind of autoregressive process it appears to be. Check out the power spectrum, and if it is a red spectrum (which is fairly universal

in geophysics) just create an autoregressive process to mimic the spectral slope.

(I.e create a time series from random white data, make an recursive filter to tune

the spectra to look like the real thing).

for example: (you can put in your own alpha, or change how many lags you

```
want)
function rednoise,len
; rewrite to calc all random numbers at once.
randomnumbers = randomn(seed, len)

alpha = 0.99d; the one-lag autocorrelation of the red noise

factor = sqrt(1-alpha^2)
x = dblarr(len)
x(0) = factor*randomnumbers[0];
for i=1L,len-1 do begin
x(i)=x(i-1)*alpha + factor*randomnumbers[i];
endfor

return,x
end
```