
Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by on Thu, 30 Sep 2010 08:39:59 GMT
View Forum Message <> Reply to Message

On Sep 29, 6:57 pm, Karl <karl.w.schu...@gmail.com> wrote:
> On Sep 29, 10:05 am, Paolo <pgri...@gmail.com> wrote:
>
>
>
>> On Sep 29, 11:55 am, Axel M <axe...@gmail.com> wrote:
>
>>> On 29 Sep., 17:45, Paulo Penteado <pp.pente...@gmail.com> wrote:
>
>>>> On Sep 29, 12:24 pm, Axel M <axe...@gmail.com> wrote:
>
>>>> > Great, I did not know about this construction, and honestly I do not
>>>> > understand how it works (is there any documentation about it?).
>>>> > Anyways, I tried it, and unfortunately I saw that it needed ~20%
>>>> > longer (the complete function, not the rebin only). So, it is not
>>>> > faster.. but it is great though.
>
>>>> It is replicating a structure of a single field which contains the
>>>> array input ({temp:input}), then selecting only a single field (the
>>>> first, 0) of the resulting structure array. Documentation for this
>>>> would be on creation and use of structures.
>
>>> Ok, I got it. Thanks! Then probably it is the memory allocation for
>>> the array of structures which takes so long... it would be great if
>>> the ITT people would develop a _fast_ vector replicate, I fear
>>> rebinning is not the best option.
>
>>> In any case, based on the answers, I assume that my problem is rather
>>> on the matrix multiplication part, so I can probably do nothing for
>>> that.
>
>>> Thanks a lot
>
>> well considering your original problem - you need to apply
>> a linear transformation to N vectors v_i=(x_i,y_i,z_i),
>> for i going from 0 to a large N, right?
>
>> I would just explicitely compute the transformed vectors
>
>> z_i=(xx_i,yy_i,zz_i)
>
>> by just writing out in the program the computation for every
>> component,
>> i.e.

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72749#msg_72749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> xx=x*c1+y*c2+z*c3+c4
>> and same for yy,zz with appropriate constant coefficients c1,c2,c3,c4
>> (that are the same for all i).
>
>> But then maybe i misunderstood the problem...
>
>> Ciao,
>> Paolo
>
> Yeah, I think you are right.
>
> Another way to see it:
>
> FUNCTION vc2rc, v0,v1,v2,v3,vc
> xform = [[v1],[v2],[v3]]
> n = <number of points in vc>
> for i=0, n-1
> temp = vc[*,i]
> temp = temp # xform + v0
> vc[*,i] = temp
> end
> END
>
> This assumes that you can change vc itself and that v0 is a 3-vector.
> In this case, there is only one copy of the point array, as it is
> being transformed in place. In other schemes, there may have been as
> many as three or four copies. If it is not OK to change vc, then this
> function would have to make a vr array of the same shape as vc and
> return it. But it is still the best solution as far as memory goes.
>
> Yeah, the for loop is going to be slow, but a test will tell if it is
> faster than other approaches. If the program causes paging to disk
> with the original approach, then the for loop may be faster. If speed
> is really, really important, then the above can be implemented in a C
> DLM.
>
> And yes, the three lines with "temp" can be collapsed into one, but
> IDL will make small temps anyway here and so a single line may not be
> much faster. I left it as three lines for clarity.

Hi,

Thanks for the idea. I tried it, below is the function code (original
and "accelerated" with your idea) and the test code. By explicitly
applying the linear transformation (_accel version) within a loop it
took 15 times longer... I guess IDL does this better with the #
operator.

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

I still think I can most definitely gain time by using the fact that
vc represents just all indexes of an array, but I have to find out how
to exploit this property...

FUNCTION vc2rc, v0,v1,v2,v3,vc
	RETURN, [[v1],[v2],[v3]] # vc + REBIN(v0, SIZE(vc, /DIMENSIONS))
END

FUNCTION vc2rc_accel, v0,v1,v2,v3,vc
	npoints = (SIZE(vc, /DIMENSIONS))[1]
	for i=0L, npoints-1 DO BEGIN
		vc[*,i] = vc[0,i] * v1 + vc[1,i] * v2 + vc[2,i] * v3 + v0
	endfor
	RETURN, vc
END

PRO testspeed
	dims = [100,100,100]
 i = LINDGEN(LONG(dims[0])*dims[1]*dims[2]) ;image dimensions
 vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])
	v0=[5,5,5] ;origin
	v1=[1.0,0,0] ;vectors
	v2=[0,1.0,0]
	v3=[0,0,2.0]

	t0 =SYSTIME(/SECONDS)
	rc = vc2rc_accel(v0,v1,v2,v3,vc)
	rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])
	rc = vc2rc_accel(v0,v1,v2,v3,vc)
	print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)

	rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])

	t0 =SYSTIME(/SECONDS)
	rc = vc2rc(v0,v1,v2,v3,vc)
	rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])
	rc = vc2rc(v0,v1,v2,v3,vc)
	print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)

	rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])

	t0 =SYSTIME(/SECONDS)

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	rc = vc2rc_accel(v0,v1,v2,v3,vc)
	rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])
	rc = vc2rc_accel(v0,v1,v2,v3,vc)
	print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)
END

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

