Subject: Re: LIST performance
Posted by Paul Van Delst[1] on Mon, 08 Nov 2010 15:33:22 GMT

View Forum Message <> Reply to Message

Hello,
Only indirectly related to your post re: list() performance....

FWIW, | altered some of my code recently from using structures containing PTRARRS to
accumulate arrays of disparate

things to using LISTs. The latter code with the LISTs was *much* easier to understand (and |
mean a *lot* easier), but

was noticeably slower than the code with my structure/PTRARR data object abomination.

IMPORTANT NOTE: To be fair my timing results are probably not worth the electrons used to
display them on my screen but

they were reliably fractions of a second (at most 0.01-0.1s) with the structure/PTRARR setup, as
opposed to several

seconds (5-6s) using the LISTs. Multiply that by several datasets, as well as multiple runs for unit
tests, and the

difference borders on tiresome but leaning strongly towards annoying. :0)

| stuck with the slower LISTs because a) of easier code maintenance and b) | am assuming the
list performance will be

improved in future versions of IDL -- my conversion was done and tested with 8.0... | haven't
tested with 8.0.1. [*]

I'll need to do a bit of digging in our repository to pull out the old code and document the
comparison so as make this
post more fact than hearsay.

cheers,
paulv

[*] Some earlier implementations of Fortran90 compilers had similar issues with array syntax over
DO loops. That is,
given array variables like
REAL, DIMENSION(100) :: a, b, c
operations using array syntax, like
a=b+c
were much slower than the usual do loop:
DOi=1, 100
a(i) = b(i) + c()
END DO
The compilers eventually caught up performance-wise, but it took several years for the "Fortran90
is waaaay slower than
FORTRANTY7" perception to dissipate.

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31540&goto=73434#msg_73434
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=73434
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

JD Smith wrote:

One of the performance bottlenecks IDL users first run into is the
deficiencies of simple-minded accumulation. That is, if you will be
accumulating some unknown number of elements into an array throughout
some continued operation, simple methods like:

foreach thing,bucket_o_things,i do begin
stuff=something_which_produces_an_unknown_number_of _element(thing)
if n_elements(array) eq 0 then array=stuff else array=[array,stuff]

endforeach

fail horribly. The problem here is the seemingly innocuous call
"array=[array,stuff]," which 1) makes a new list which can fit both
pieces, and 2) copies both pieces in. This results in a *huge* amount
of wasted copying. To overcome this, a typical approach is to
preallocate an array of some size, filling it until you run out room,

at which point you extend it by some pre-specified block size. It's
also typical to double this block size each time you make such an
extension. This drastically reduces the number of concatenations, at
the cost of some bookkeeping and "wasted" memory allocation for the
unused elements which must be trimmed off the end.

At first glance, it would seem the LIST() object could save you all

this trouble: just a make a list, and "add" 'stuff' to it as needed,

no copying required. Unfortunately, the performance of LISTs for
accumulation, while much better than simple-minded accumulation as
above, really can't compete with even simple array-expansion methods.
See below for a test of this.

Part of the problem is that the toArray method cannot operate on list
elements which are arrays. Even without this, however, LIST's
performance simply can't match a simple-minded "expand-and-
concatenate" accumulation method. In fact, even a pointer array
significantly outperforms LIST (though it's really only an option when
you know in advance how many accumulation iterations will occur... not
always possible). Example output:

EXPAND-CONCATENATE accumulate: 0.19039917
PTR accummulate: 0.40397215
LIST accummulate: 1.5151551

I'm not sure why this is. In principle, a lightweight, (C) pointer-

based linked list should have very good performance internally. So,
while very useful for aggregating and keeping track of disparate data
types, LIST's are less helpful for working with large data sets.

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

JD

+Httt
n=100000L

;; First method: Expand array in chunks, doubling each time.

t=systime(1)
bs=25L
off=0
array=lonarr(bs,/NOZERO)
sarr=bs
for i=0L,n-1 do begin
len=1+(i mod 100)
if (off+len) ge sarr then begin
bs*=2
array=[array,lonarr(bs,/NOZERO)]
sarr+=bs
endif
array[off]=indgen(len)
off+=len
endfor
array=array[0:off-1]
print, EXPAND-CONCATENATE accummulate: ',systime(t)-t

;; Second method: Use pointers

parr=ptrarr(n)

c=0

for i=0L,n-1 do begin
len=1+(i mod 100)
parr[i]=ptr_new(indgen(len))
c+=len

endfor

new=intarr(c,/NOZERO) ;; exactly the correct size
off=0L
foreach elem,parr do begin
new|off]=*elem
off+=n_elements(*elem)
endforeach
print,PTR accumulate: ", systime(1)-t

:: Third method: Use LIST
t=systime(1)

list=list()

c=0

for i=0L,n-1 do begin

VVVYVVYVYVYVYVYV

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

len=1+(i mod 100)
list.add,indgen(len)
c+=len

endfor

;; List::ToArray should do this for you internally!!!
new2=intarr(c,/NOZERO) ;; exactly the correct size
off=0L
foreach elem,list do begin

new?2[off|=elem

off+=n_elements(elem)
endforeach
print,'LIST accummulate: ", systime(1)-t

END

VVVVVVVVVVVVVVVYVYVYVYV

Page 4 of 4 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

