
Subject: Re: LIST performance
Posted by Paul Van Delst[1] on Mon, 08 Nov 2010 15:33:22 GMT
View Forum Message <> Reply to Message

Hello,

Only indirectly related to your post re: list() performance....

FWIW, I altered some of my code recently from using structures containing PTRARRs to
accumulate arrays of disparate
things to using LISTs. The latter code with the LISTs was *much* easier to understand (and I
mean a *lot* easier), but
was noticeably slower than the code with my structure/PTRARR data object abomination.

IMPORTANT NOTE: To be fair my timing results are probably not worth the electrons used to
display them on my screen but
they were reliably fractions of a second (at most 0.01-0.1s) with the structure/PTRARR setup, as
opposed to several
seconds (5-6s) using the LISTs. Multiply that by several datasets, as well as multiple runs for unit
tests, and the
difference borders on tiresome but leaning strongly towards annoying. :o)

I stuck with the slower LISTs because a) of easier code maintenance and b) I am assuming the
list performance will be
improved in future versions of IDL -- my conversion was done and tested with 8.0... I haven't
tested with 8.0.1. [*]

I'll need to do a bit of digging in our repository to pull out the old code and document the
comparison so as make this
post more fact than hearsay.

cheers,

paulv

[*] Some earlier implementations of Fortran90 compilers had similar issues with array syntax over
DO loops. That is,
given array variables like
 REAL, DIMENSION(100) :: a, b, c
operations using array syntax, like
 a = b + c
were much slower than the usual do loop:
 DO i = 1, 100
 a(i) = b(i) + c(i)
 END DO
The compilers eventually caught up performance-wise, but it took several years for the "Fortran90
is waaaay slower than
FORTRAN77" perception to dissipate.

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31540&goto=73434#msg_73434
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=73434
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

JD Smith wrote:
> One of the performance bottlenecks IDL users first run into is the
> deficiencies of simple-minded accumulation. That is, if you will be
> accumulating some unknown number of elements into an array throughout
> some continued operation, simple methods like:
>
> foreach thing,bucket_o_things,i do begin
> stuff=something_which_produces_an_unknown_number_of_element(thing)
> if n_elements(array) eq 0 then array=stuff else array=[array,stuff]
> endforeach
>
> fail horribly. The problem here is the seemingly innocuous call
> "array=[array,stuff]," which 1) makes a new list which can fit both
> pieces, and 2) copies both pieces in. This results in a *huge* amount
> of wasted copying. To overcome this, a typical approach is to
> preallocate an array of some size, filling it until you run out room,
> at which point you extend it by some pre-specified block size. It's
> also typical to double this block size each time you make such an
> extension. This drastically reduces the number of concatenations, at
> the cost of some bookkeeping and "wasted" memory allocation for the
> unused elements which must be trimmed off the end.
>
> At first glance, it would seem the LIST() object could save you all
> this trouble: just a make a list, and "add" 'stuff' to it as needed,
> no copying required. Unfortunately, the performance of LISTs for
> accumulation, while much better than simple-minded accumulation as
> above, really can't compete with even simple array-expansion methods.
> See below for a test of this.
>
> Part of the problem is that the toArray method cannot operate on list
> elements which are arrays. Even without this, however, LIST's
> performance simply can't match a simple-minded "expand-and-
> concatenate" accumulation method. In fact, even a pointer array
> significantly outperforms LIST (though it's really only an option when
> you know in advance how many accumulation iterations will occur... not
> always possible). Example output:
>
> EXPAND-CONCATENATE accumulate: 0.19039917
> PTR accummulate: 0.40397215
> LIST accummulate: 1.5151551
>
> I'm not sure why this is. In principle, a lightweight, (C) pointer-
> based linked list should have very good performance internally. So,
> while very useful for aggregating and keeping track of disparate data
> types, LIST's are less helpful for working with large data sets.
>

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> JD
>
>
> ++++++++++++++
> n=100000L
>
> ;; First method: Expand array in chunks, doubling each time.
>
> t=systime(1)
> bs=25L
> off=0
> array=lonarr(bs,/NOZERO)
> sarr=bs
> for i=0L,n-1 do begin
> len=1+(i mod 100)
> if (off+len) ge sarr then begin
> bs*=2
> array=[array,lonarr(bs,/NOZERO)]
> sarr+=bs
> endif
> array[off]=indgen(len)
> off+=len
> endfor
> array=array[0:off-1]
> print,'EXPAND-CONCATENATE accummulate: ',systime(t)-t
>
> ;; Second method: Use pointers
> parr=ptrarr(n)
> c=0
> for i=0L,n-1 do begin
> len=1+(i mod 100)
> parr[i]=ptr_new(indgen(len))
> c+=len
> endfor
>
> new=intarr(c,/NOZERO) ;; exactly the correct size
> off=0L
> foreach elem,parr do begin
> new[off]=*elem
> off+=n_elements(*elem)
> endforeach
> print,'PTR accumulate: ',systime(1)-t
>
> ;; Third method: Use LIST
> t=systime(1)
> list=list()
> c=0
> for i=0L,n-1 do begin

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> len=1+(i mod 100)
> list.add,indgen(len)
> c+=len
> endfor
>
> ;; List::ToArray should do this for you internally!!!
> new2=intarr(c,/NOZERO) ;; exactly the correct size
> off=0L
> foreach elem,list do begin
> new2[off]=elem
> off+=n_elements(elem)
> endforeach
> print,'LIST accummulate: ',systime(1)-t
>
> END
>
>
>
>

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

