
Subject: Re: LIST performance
Posted by Jeremy Bailin on Sat, 13 Nov 2010 22:21:23 GMT
View Forum Message <> Reply to Message

On Nov 8, 9:18 pm, Mark Piper <mpi...@ittvis.com> wrote:
> On Nov 6, 2:07 pm, JD Smith <jdtsmith.nos...@yahoo.com> wrote:
>
>
>
>
>
>
>
>
>
>> One of the performance bottlenecks IDL users first run into is the
>> deficiencies of simple-minded accumulation. That is, if you will be
>> accumulating some unknown number of elements into an array throughout
>> some continued operation, simple methods like:
>
>> foreach thing,bucket_o_things,i do begin
>> stuff=something_which_produces_an_unknown_number_of_element(thing)
>> if n_elements(array) eq 0 then array=stuff else array=[array,stuff]
>> endforeach
>
>> fail horribly. The problem here is the seemingly innocuous call
>> "array=[array,stuff]," which 1) makes a new list which can fit both
>> pieces, and 2) copies both pieces in. This results in a *huge* amount
>> of wasted copying. To overcome this, a typical approach is to
>> preallocate an array of some size, filling it until you run out room,
>> at which point you extend it by some pre-specified block size. It's
>> also typical to double this block size each time you make such an
>> extension. This drastically reduces the number of concatenations, at
>> the cost of some bookkeeping and "wasted" memory allocation for the
>> unused elements which must be trimmed off the end.
>
>> At first glance, it would seem the LIST() object could save you all
>> this trouble: just a make a list, and "add" 'stuff' to it as needed,
>> no copying required. Unfortunately, the performance of LISTs for
>> accumulation, while much better than simple-minded accumulation as
>> above, really can't compete with even simple array-expansion methods.
>> See below for a test of this.
>
>> Part of the problem is that the toArray method cannot operate on list
>> elements which are arrays. Even without this, however, LIST's
>> performance simply can't match a simple-minded "expand-and-
>> concatenate" accumulation method. In fact, even a pointer array
>> significantly outperforms LIST (though it's really only an option when

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31540&goto=73515#msg_73515
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=73515
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> you know in advance how many accumulation iterations will occur... not
>> always possible). Example output:
>
>> EXPAND-CONCATENATE accumulate: 0.19039917
>> PTR accummulate: 0.40397215
>> LIST accummulate: 1.5151551
>
>> I'm not sure why this is. In principle, a lightweight, (C) pointer-
>> based linked list should have very good performance internally. So,
>> while very useful for aggregating and keeping track of disparate data
>> types, LIST's are less helpful for working with large data sets.
>
>> JD
>
>> ++++++++++++++
>> n=100000L
>
>> ;; First method: Expand array in chunks, doubling each time.
>
>> t=systime(1)
>> bs=25L
>> off=0
>> array=lonarr(bs,/NOZERO)
>> sarr=bs
>> for i=0L,n-1 do begin
>> len=1+(i mod 100)
>> if (off+len) ge sarr then begin
>> bs*=2
>> array=[array,lonarr(bs,/NOZERO)]
>> sarr+=bs
>> endif
>> array[off]=indgen(len)
>> off+=len
>> endfor
>> array=array[0:off-1]
>> print,'EXPAND-CONCATENATE accummulate: ',systime(t)-t
>
>> ;; Second method: Use pointers
>> parr=ptrarr(n)
>> c=0
>> for i=0L,n-1 do begin
>> len=1+(i mod 100)
>> parr[i]=ptr_new(indgen(len))
>> c+=len
>> endfor
>
>> new=intarr(c,/NOZERO) ;; exactly the correct size
>> off=0L

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> foreach elem,parr do begin
>> new[off]=*elem
>> off+=n_elements(*elem)
>> endforeach
>> print,'PTR accumulate: ',systime(1)-t
>
>> ;; Third method: Use LIST
>> t=systime(1)
>> list=list()
>> c=0
>> for i=0L,n-1 do begin
>> len=1+(i mod 100)
>> list.add,indgen(len)
>> c+=len
>> endfor
>
>> ;; List::ToArray should do this for you internally!!!
>> new2=intarr(c,/NOZERO) ;; exactly the correct size
>> off=0L
>> foreach elem,list do begin
>> new2[off]=elem
>> off+=n_elements(elem)
>> endforeach
>> print,'LIST accummulate: ',systime(1)-t
>
>> END
>
> This is good timing! On Wednesday, I'm giving a web seminar on using
> arrays, structures, lists & hashes in IDL. My webinar is pitched at an
> introductory level, but I do plan to show some simple performance
> results. I haven't put in the amount of research that JD, Paulo, Mark
> and Paul have shown in this thread, but I'll refer to the discussion
> in this thread in the webinar.
>
> I'm doing the webinar live three times on Wednesday, November 10. The
> times (all local) are: 11 am Singapore, 2 pm London and 2 pm New York.
> Please check the VIS website for signup information:
>
> http://www.ittvis.com/EventsTraining/LiveWebSeminars.aspx
>
> The webinars are recorded, so even if you can't attend a live session,
> please sign up and you'll receive a message when the recording is
> posted to our website. I also have examples that I'll use in the
> webinar; these can be downloaded from:
>
> http://bit.ly/IDL-webinar-files
>
> They'll be ready a few hours before the first webinar.

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> mp

Any idea when the archived version will be up? I couldn't make it.

-Jeremy.

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

