
Subject: Re: LIST performance
Posted by chris_torrence@NOSPAM on Fri, 12 Nov 2010 17:46:01 GMT
View Forum Message <> Reply to Message

Hi JD,

Just to put in my 2 cents, LIST (like much of IDL) is a general
purpose set of functionality. It was never designed to replace the use
of arrays, where the data is laid out in memory in the most efficient
manner. The IDL LIST is implemented as a doubly-linked list, which is
very efficient for adding & removing elements from arbitrary
positions, especially elements of different or complicated types. If
you're only using integers or floats, you probably don't want to use a
list.

Here's an example for adding & removing random elements from an array
of structures:

print,' N Array(s)' + $
 ' List(s) Ratio'
for nn=2,4 do begin
 n = 10L^nn
 iter = 10L^(6 - nn)
 a = REPLICATE(!map, n)
 t = systime(1)
 for i=0,iter-1 do begin
 index = RANDOMU(seed,1)*(n-2) + 1
 a = [a[0:index-1], !map, a[index:*]]
 a = [a[0:index-1], a[index+1:*]]
 endfor
 timearray = systime(1)-t

 a = LIST(REPLICATE(!map, n), /EXTRACT)
 t = systime(1)
 for i=0,iter-1 do begin
 index = RANDOMU(seed,1)*(n-2) + 1
 a.Add, !map, index
 a.Remove, index
 endfor
 timelist = systime(1)-t

 print, n, timearray, timelist, timearray/timelist
endfor
end

When I run this on my Win32 XP laptop, I get the following results:

 N Array(s) List(s) Ratio

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31548&goto=73542#msg_73542
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=73542
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 100 3.3750000 0.38999987 8.6538491
 1000 5.5160000 0.10899997 50.605520
 10000 7.2500000 0.078000069 92.948636

Part of the reason the LIST is slower in your example is the overhead
with both error checking and the operator overloading. The List::Add
and List::overloadForeach are both method calls, so there is some
additional overhead for making a call instead of just doing it in-
place like in your pointer example.

Now, all that being said, we'll continue to make performance
improvements in future versions. For example, I just rewrote the
List::ToArray to be about 10 times faster. It's still "brutally slow"
for your particular example, but for other scenarios it's much faster.

Finally, I like your idea about making the ::ToArray method work
properly for list elements that are arrays. I'll see what I can do.

Keep the feedback coming.
Cheers,

Chris
ITTVIS

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

