
Subject: Re: LIST performance
Posted by JDS on Thu, 16 Dec 2010 23:32:37 GMT
View Forum Message <> Reply to Message

On Nov 12, 12:46 pm, Chris Torrence <gorth...@gmail.com> wrote:
> Hi JD,
>
> Just to put in my 2 cents, LIST (like much of IDL) is a general
> purpose set of functionality. It was never designed to replace the use
> of arrays, where the data is laid out in memory in the most efficient
> manner. The IDL LIST is implemented as a doubly-linked list, which is
> very efficient for adding & removing elements from arbitrary
> positions, especially elements of different or complicated types. If
> you're only using integers or floats, you probably don't want to use a
> list.

Thanks, Chris. I suppose having learned to program in C, "linked-
list"
implies some raw, close-to-the-hardware speed, i.e. more akin to
normal
IDL array operations than to object-wrapped IDL pointers referencing
small data sets ;). But I agree that LIST has a lot of unnecessary
overhead if all you want is an expandable array of a given data type.
The problem is... IDL has no such thing as flexible array expansion,
so
we use various tricks for this commonly needed storage pattern.

In any case, I did expand my analysis of array accumulation, varying
the
chunk size and the total number of accumulations over wide ranges. I
tested four algorithms: "expanding concatenation", "pre-allocated
pointer array", "LIST", and a hybrid approach, adding pointers to each
chunk to a list. Here is the result:

 http://idlwave.org/idl/accumulate.png

and code:

 http://idlwave.org/idl/test_list_accum.pro

For small chunk sizes (1 integer added per accumulation step, dotted
lines), LIST is very inefficient, the POINTER method is several times
slower than a "doubling concatenation". As you increase the total
amount accumulated per step however, the story changes. For large
chunks, on average 5000/2=2500 items per accumulation step, the
POINTER
method is the clear favorite, and LIST beats out my hacked doubling
concatenation, likely because it is less efficient with memory.

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6762
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31548&goto=74021#msg_74021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=74021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Still,
you might hope that LIST and an array of POINTERS would offer (more)
similar performance.

> Here's an example for adding & removing random elements from an array
> of structures:
>
<snip>
> a = [a[0:index-1], !map, a[index:*]]
> a = [a[0:index-1], a[index+1:*]]
<snip>

Yes, random insertion is clearly where a linked list
would excel vs. rote recopying of a large array on every insertion. So
would it have had you written your own linked list using IDL PTRs (as
I
believe a few people have). It's for this reason that I feel that
random *accumulation* is a better test of LIST's overall speed, since
LIST is a native, internal IDL type and can potentially do more than
we
could do.

> Part of the reason the LIST is slower in your example is the overhead
> with both error checking and the operator overloading. The List::Add
> and List::overloadForeach are both method calls, so there is some
> additional overhead for making a call instead of just doing it in-
> place like in your pointer example.

Right. That's clearly evident in the comparison between LIST and
Pointer (Blue/Green) in my results. I'm a bit surprised that the
overhead would still be significant when adding thousands of elements
at
a time.

> Now, all that being said, we'll continue to make performance
> improvements in future versions. For example, I just rewrote the
> List::ToArray to be about 10 times faster. It's still "brutally slow"
> for your particular example, but for other scenarios it's much faster.
>
> Finally, I like your idea about making the ::ToArray method work
> properly for list elements that are arrays. I'll see what I can do.

Thanks. I had presumed there would be plenty of optimization overhead
left for LIST. Good luck squeezing all of it out!

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

