Subject: Re: 3D vector rotation to the Z axis Posted by James[2] on Thu, 16 Dec 2010 19:48:18 GMT View Forum Message <> Reply to Message

Do you have to use a rotation matrix? Quaternions (http://en.wikipedia.org/wiki/Quaternion) are more numerically stable, and there is an easy-to-use library by Craig Markwardt at http://www.physics.wisc.edu/~craigm/idl/math.html. I was just using them to draw some rotating polyhedra in IDL, and they work great! Your code would look like this:

```
;define the axis of rotation
rotaxis = crossp (input, [0,0,1])
;find the angle of rotation
rotangle = transpose(input) # [0,0,1]
;make the quaternion
q = qtcompose(rotaxis, rotangle)
;do it
rotated = qtvrot(input, q)
;there is even a routine to create a rotation matrix from the quaternion:
rmatx = qtmat(q)
```

by the way, I like the # operator. It lets you treat 1D arrays as column vectors; then defining a matrix is just concatenating a group of column vectors across the second dimension. Matrix-by-vector multiplication works like you expect.

- James

On Dec 14, 12:28 pm, David Fanning <n...@dfanning.com> wrote:

- > MartyL writes:
- >> Any help appreciated.

>

- > I don't have any suggestions. You obviously know more
- > about this than I do. Just an observation. I know any
- > time I try to translate matrix operations out of a book
- > into IDL my head swells up to about three times its
- > normal size trying to keep columns and rows straight.

>

- > That said, using the # operator, rather than the ## operator
- > always throws me back from discovering the solution at LEAST
- > two days, sometimes more. :-(

```
> Cheers,
> David
```

- > David Fanning, Ph.D.
- > Fanning Software Consulting, Inc.
- > Coyote's Guide to IDL Programming:http://www.dfanning.com/
- > Sepore ma de ni thui. ("Perhaps thou speakest truth.")