Subject: Re: FFT of gaussian Posted by Kenneth P. Bowman on Wed, 12 Jan 2011 14:28:31 GMT View Forum Message <> Reply to Message

In article

<e8f1db77-67a5-491f-9671-fbd85c50a7b6@a10g2000vby.googlegroups.com>, Gray <graylikethecolor@gmail.com> wrote:

- > Hi all,
- >
- > Here's something I don't really understand. The Fourier transform of
- > a Gaussian function is another Gaussian... so why if I create a
- > Gaussian and run FFT do I not get a Gaussian? Is it because my
- > Gaussian vector is discrete? How can I fix this?

You get the discrete transform of a discrete approximation to a Gaussian, which is also a discrete approximation to a Gaussian.

Try this:

IDL> x = -5.0d0 + 0.1d0*dindgen(101)IDL> $y = exp(-(x^2))$ IDL> plot, x, yIDL> yt = fft(y)IDL> plot, shift(abs(yt),50)

Don't forget, the IDL always does a full complex FFT.

Ken Bowman