Subject: Re: Drawing satellite pixels on maps?
Posted by Robert.M.Candey on Tue, 19 Nov 1996 08:00:00 GMT

View Forum Message <> Reply to Message

In article <3291C91F.7F816972@oma.be>, Philippe Peeters
<Philippe.Peeters@oma.be> wrote:

I've already posted this question some time ago but did not get any
answer. Here | go again:

| want to draw satellite data on a map. Each ground pixel is defined by
the latitude and longitude of the 4 corners. It is not a regular

rectangle or square and depend on the viewing geometry of the satellite
instrument.

| have tried a simple polyfill,long,lat but | have serious problems with
orthographic maps when the pixel is partly off the map. | got strange
filled polygons from the edge of the map to the corner of the window.
Someone on the net advice me to use a new polyfill routine which checks
polygons boundaries before drawing it. Though slower than the original
polyfill, it solved the problem.

But | still have another problem with several maps when the pixel to be
drawn is at the edge, i.e. when one or several pixel corner is on one
side of the map (lon > -180) and the other on the other side (lon< -180)
of the map.

example longitude=[-179,-181,-179.5,-180.5] or [179,181,179.5,180.5]

The pixel is drawn from one side to the other of the map which is pretty
ugly. Obviously this is a 'normal’ way of drawing that kind of pixel,
polyfill is not supposed to know that it has to cut the pixel into two.
Does anybody know how to solve this problem.

And now a question related to the same topic. How can | resample the
irregular ground pixels onto a regular (square or rectangle) grid?

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

Philippe Peeters

| have struggled with similar problems and recently posted my attempts at a
solution (auroral_image.pro; email me for a copy). To get around the
problem of polyfill across the whole map, | checked to see if the endpoints
of the polygon to fill are nearby in normalized coordinates and then |
skipped plotting it if it was not nearby; you could split the polygon in

two and plot each part, | suupose. The code is like this (for a list of
triangles, with Latl and Lonl defined at each corner):

pAll = convert_coord(Lon1, Latl, /data, /to_normal)
pLon = pAll(0,*) & pLat = pAll(1,*)
for i=0L,n_elements(triangles(0,*))-1 do begin

tril = triangles(*,i)

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1066
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5022&goto=7452#msg_7452
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=7452
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Lon3 = Lonl(tril) & Lat3 = Lat1(tril)
##H# which average scheme is best?
, Zbl =avg(Zb(tril)) ; average byte values
; Zbl = Zb(tri1(0)) ; faster than avg and as accurate?
Zb1 = doByteScale([avg(Z2(tril))],minZ1,maxZ1,Zsize,wBad,flipColor Bar,1)
; doByteScale is my routine for scaling the data values between minZ1 and maxZ1
: with some other constraints
if (total(abs(pLon(tril)-shift(pLon(tril),1))) It 0.1) and $
(total(abs(pLat(tril)-shift(pLat(tril),1))) It 0.1) then $
polyfill, Lon3, Lat3, color=2b1(0), noclip=0
; you could do a "where" here instaed of "if" to find which corners are out of
; bounds
endfor

As for resampling, you could use triangulate and trigrid with the sphere
option (see the Map_image method in my auroral_image.pro for an example);
but you are probably better off (more scientifically accurate) plotting the
original polygons and not resampling

Robert.M.Candey@gsfc.nasa.gov
NASA Goddard Space Flight Center, Code 632
Greenbelt, MD 20771 USA 1-301-286-6707

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

