
Subject: Re: INTERPOLATION TECHNIQUES HELP
Posted by dan on Tue, 19 Nov 1996 08:00:00 GMT
View Forum Message <> Reply to Message

In article <56acrg$vuk@news.esrin.esa.it>, Marcos Portabella Arnus - RS/EM <marcos> writes:
|> Hi,
|>
|> I need some help about the idl interpolation functions. I have tried all of
|> them and I could not get any satisfactory result. I supose this is due to my
|> lack of knowledge about them and this is the reason I am writing to this
|> newsgroup list. I am using IDL version 4.0.1 (vms alpha). My problem is the
|> following:
|>
|> I have three data vectors. The first two are X and Y position coordinates
|> (longitude and latitude) and the third one is the magnitude mesured at each
|> point (in my case, wind measurements). These points have not any order
|> (irregularly gridded points) . In order to make an interpolation of these
|> points in a regurlar grid (with a x and y spacing of half degree, for example)
|> I have tried all three idl functions that allow this type of interpolation. The
|> first one, the TRIGRID function, is very fast but the results are poor
|> (moreover, at the grid border, where it oftenly needs to extrapolate, the
|> results are incredibily wrong, even if I set the EXTRAPOLATE keyword). The
|> second one, the KRIG2D function, gives much better results but the major
|> problem is the execution time: the time increases exponentially with the number
|> of points. I do not know if changing the function parameters (A, CO, C1) may
|> reduce the execution time, but as far as I have tested with the idl help
|> examples I could no get any better result. The third and last one, the
|> MIN_CURVE_SURF function, has the same time restriction as the KRIG2D function.
|>
|> I would like to know if there is any other interpolating function for
|> irregularly gridded points that gives better time results; or, if using more
|> addequatly the KRIG2D or MIN_CURVE_SURF functions I can get better time
|> results as well.
|>
|> Thank you very much,
|>
|> Marcos Portabella
|>

Here is a routine I wrote which maps scattered data (longitude,latitude,value)
onto a regular lat,lon grid on a sphere.

; ID

;+
; Name:
; INTERP_SPHERE
;

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=306
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5016&goto=7461#msg_7461
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=7461
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; PURPOSE:
; This function maps scattered data defined by
; (longitude,latitude,value) onto a regular, but not
; neccessarily evenly spaced, grid whose coordinates are
; also defined by longitude and latitude. The procedure searches
; for the N (default = 5) closest data points to each grid
; point and then averages these N data points weighted by
; distance^power from the grid point to the particular data point.
; Default is power=-1 which weights the points inversely by
; distance. All distances are along great circles on a sphere
; (the shortest distance between two points along the
; surface of a sphere).
;
; CATEGORY:
; Interpolation?
;
; CALLING SEQUENCE:
; grid = INTERP_SPHERE(lat,lon,data)
;
; INPUTS:
;
; lat: The latitudes on the grid where interpolated
; values are desired (in degrees)
;
; lon: The longitudes on the grid where interpolated
; values are desired (in degrees)
;
; data: An array (3,ndata) where ndata is the number of
; data points, and can be any number larger than N.
; each row of data should contain a longitude, a
; latitude, and a value to be interpolated.
;
; KEYWORD PARAMETERS:
;
; N: The number of closest data points to be used
; for each grid point interpolation. Default = 5
;
; power: The exponent for the distance weighting function.
; Default = -1 (weighting inversely by distance).
; An input of power=-.5 would weight inversely by the
; square root of the distance.
;
; latwt: The weighting for the interpolation in the meridional
; (North-South) direction. For negative power,
; latwt > 1 produces a weighting with less latitude
; influence. Default = 1
;
; mask: Mask for calculating grid values

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;
;
; OUTPUTS:
;
; grid: An array of interpolated data values. It has dimensions
; (nlon,nlat) where nlon is the number of entries in the
; input lon, and nlat is the number of entries in the input
; lat.
;
; EXAMPLE:
;
; MODIFICATION HISTORY:
;
; written by: Dan Bergmann dbergmann@llnl.gov 11/10/94
;-

FUNCTION INTERP_SPHERE,lat,lon,data,n=n,power=power,latwt=latwt

nlat = (size(lat))(1)
nlon = (size(lon))(1)
grid = fltarr(nlon,nlat)

if (not(keyword_set(n))) then n = 5
if (not(keyword_set(power))) then power = -1
if (not(keyword_set(latwt))) then latwt = 1
if (not(keyword_set(mask))) then begin
 mask = intarr(nlon,nlat)
 mask(*,*) = 1
endif

dtr = !pi / 180.

; convert lat and lon to radians

latr = dtr * lat
lonr = dtr * lon

; convert the lat and lon of the data to radians

dlatr = dtr * data(1,*)
dlonr = dtr * data(0,*)

; calculate the cartesian coordinates of the data points
; assuming a unit sphere.

xdata = cos(dlatr) * sin(dlonr)
ydata = cos(dlatr) * cos(dlonr)

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

zdata = sin(dlatr)

for x=0,nlon-1 do begin

 sinlonr = sin(lonr(x))
 coslonr = cos(lonr(x))

 for y=0,nlat-1 do begin

; check to see if this grid should be calculated

 if (mask(x,y) ne 0) then begin

; calculate the cartesian coordinates of this particular
; grid point.

 xorig = cos(latr(y)) * sinlonr
 yorig = cos(latr(y)) * coslonr
 zorig = sin(latr(y))

; calculate the length squared of the cords connecting this grid
; point to all the data points and then sort the data points by
; these values.

 corddistsq = (xorig-xdata)^2+(yorig-ydata)^2+((zorig-zdata)*latwt)^2

 sortdist = (sort(corddistsq))(0:n-1)

; if a data point lies directly on top of this grid point, then
; assign that value to the grid point.
; Otherwise calculate the n great circle distances and do a weighted
; average of the data values.

 if ((corddistsq(sortdist))(0) eq 0) then begin

 grid(x,y) = data(2,(sortdist)(0))

 endif else begin

 grcirdis = asin(sqrt(corddistsq(sortdist))/2.)

 grid(x,y) = (total(data(2,sortdist) * grcirdis^power)) / total(grcirdis^power)

 endelse

 endif

 endfor

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

endfor

return,grid

end
--
 ** ***
** Dan Bergmann dbergmann@llnl.gov **
** Atmospheric Science Division fax (510) 422-5844 **
** Lawrence Livermore National Lab human (510) 423-6765 **

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

