
Subject: Re: New Object Method Invocation Syntax Brokenness
Posted by penteado on Tue, 17 May 2011 17:37:45 GMT
View Forum Message <> Reply to Message

On May 17, 1:17 pm, JDS <jdtsmith.nos...@yahoo.com> wrote:
> In my version of IDL 8.0, your example follows, but my example does not. I.e.
self->item([1,2,3,4]) still correctly calls the method in IDL 8.0, but no longer does it in 8.0.1. My
take is that IDL 8 introduced the syntax ambiguity ("->" and "." interchangeable), then IDL 8.0.1
reversed the precedence in ambiguous cases, now favoring structure/class variable dereferencing
over method calling.
>
> BTW, the documentation mentions this interchangeability in the context of method invocation:
>
> "Beginning with IDL 8.0, you can use the . and -> forms of the operator interchangeably; they
are
> equivalent."
>
> In a sense, this bug cannot be fixed, since it is inherent in the choice to make "." mean two
things. Unless idl2 is in force, you simply cannot know what I mean by:
>
> d=a.b(c)
>
> even (in the case of "b" being both a method name and a class variable), at runtime! ITT
could certainly patch "->" to avoid breaking old code, but new code will always have this potential
for silent brokenness (unless people shun "."). What's interesting is the main concern was
putting off new users with meaningless syntax error messages. This example shows a much
more problematic issue arises.
>
> One possible fix would be to make array subscripting usage following the "." operator implicitly
require brackets "[]". This would break old code like c=a.b(4), but leave intact other uses of
parentheses for array indexing. I'd call this a "partial idl2 requirement". It still leaves more
than a year's worth of IDL versions in use silently breaking old code.

This gets confusing easily. If I may expand a bit on JD's example, to
compare the dot with the arrow:

;++++++++++++++++++++++++
; failure__define.pro
pro Failure::Explode_with_arrow
 prevent=[1b] ;; Alway prevent the explosion, no matter what!
 if self->Prevent_Explosion(prevent) then $
 print, 'Explosion averted, go in peace.' $
 else print, 'Field used: !BOOM! Nuclear war initiated.'
end

pro Failure::Explode_with_dot
 prevent=[1b] ;; Alway prevent the explosion, no matter what!
 if self.Prevent_Explosion(prevent) then $

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=32439&goto=76119#msg_76119
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=76119
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 print, 'Explosion averted, go in peace.' $
 else print, 'Field used: !BOOM! Nuclear war initiated.'
end

function Failure::Prevent_Explosion, confirm
 print,'Got into the method, instead of using the field'
 return, keyword_set(confirm[0])
end

pro failure__define
 st={FAILURE,$
 prevent_explosion: 0b}
end
;++++++++++++++++++++++++

The results:

In IDL 7.1.1, which is how things should still be, to keep
compatibility with old code:

IDL> print,!version
{ x86_64 linux unix linux 7.1.1 Aug 21 2009 64 64}
IDL> f=obj_new('failure')
IDL> f->explode_with_arrow
Got into the method, instead of using the field
Explosion averted, go in peace.
IDL> f->explode_with_dot
Field used: !BOOM! Nuclear war initiated.

In 8.0 it is broken one way:

IDL> print,!version
{ x86_64 linux unix linux 8.0 Jun 18 2010 64 64}
IDL> f=obj_new('failure')
% Compiled module: FAILURE__DEFINE.
IDL> f->explode_with_arrow
Got into the method, instead of using the field
Explosion averted, go in peace.
IDL> f->explode_with_dot
Got into the method, instead of using the field
Explosion averted, go in peace.

In 8.1 it is broken the other way:

IDL> print,!version
{ x86_64 linux unix linux 8.1 Mar 9 2011 64 64}
IDL> f=obj_new('failure')
IDL> f->explode_with_arrow

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Field used: !BOOM! Nuclear war initiated.
IDL> f->explode_with_dot
Field used: !BOOM! Nuclear war initiated.

So I would say that what needs to be fixed now is only to make the
arrow mean, always, method invocation. It should never be accepted for
a structure field. The resolution of the ambiguity with the dot got
right in 8.0.1: a field should take precedence over a method.

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

