
Subject: Re: New Object Method Invocation Syntax Brokenness
Posted by Paul Van Delst[1] on Mon, 16 May 2011 21:03:36 GMT
View Forum Message <> Reply to Message

Crikey. I haven't yet verified any weird behaviour of the sort you describe in our IDL codes, but
thanks for the heads up.

Your post has been saved to my desktop (in 12years, I've only done that 4 times) for immediate
reference.

End-of-last year we went through a relatively big transformation of regular old functional code to
an object library.
The code in question is the start of our processing chain so it's, you know, sorta important that
that library work
correctly. And reliably so. In the background. The plausible-but-wrong answer is what keeps me
up at night.

If things start going pear shaped, at least I have a prototype for conversion of said IDL object
library to Fortran2003....

<Sigh>

cheers,

paulv

JDS wrote:
> A few years back, we had long discussions about the trouble the new "dot" syntax for method
invocation would bring
> about. I've just stumbled across a new and unexpected case. Not only does IDL 8 interpret "."
as equivalent to
> "->", in certain uses it also goes the OTHER WAY, recasting "->" as "." and overriding a method
invocation with
> structure variable dereferencing, *even when the arrow operator is used*. This is a major issue
for any pre-existing
> class which contains a method-function and structure member with identical names, which is
quite common.
>
> Consider this simple class:
>
> pro DOT_ARROW::try ;compile_opt idl2 print,"GOT: ",self->item([1,2,3,4]) end
>
> function DOT_ARROW::item, p return, size(p,/DIMENSIONS) end
>
> pro dot_arrow__define st={DOT_ARROW,$ item:0.0} end
>
> IDL> d=obj_new('dot_arrow') IDL> d->try GOT: 0.00000 0.00000 0.00000 0.00000
 ;; RUNS without

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=32439&goto=76136#msg_76136
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=76136
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ERROR, but is WRONG!!!
>
> Now with IDL2 enabled (or in IDL 7):
>
> IDL> d->try GOT: 4 ;; RIGHT!!!
>
> IDL 8 has gone one step further than introducing a new ambiguity between "." and "->" in the
name of Python/JS-esque
> cosmetics, it's completed that ambiguity -- essentially enforcing it on us -- by making it work
both ways. In
> essence, IDL8 is interpreting:
>
> self->item([1,2,3,4])
>
> as
>
> self.item[[1,2,3,4]]
>
> (no indexing error since you can't go out of bounds with an indexing vector by default). If I say
"->", I mean
> invoke a method, no matter what. However, as new programmers adopt "." for method
invocation, this ambiguity will
> never go away.
>
> And this is not a simple matter of troublesome syntax errors. What's really scary about this is,
there are plenty of
> imaginable cases in which a->b(c) is interpreted by IDL8 in a completely different way from
earlier versions of IDL,
> yet it can run through without error, silently corrupting your output. There is no warning against
or detection of
> the use of identical names for a method-function and a class structure variable.
>
> Chris Torrence noticed this ambiguity could cause trouble while IDL 8 was being designed; I
don't recall what the
> final decision was. But in any case, my understanding was this would be a new ambiguity,
affecting new code which
> uses the dot operator for method invocation. Never was it discussed that IDL 8 would render
inoperable (or worse,
> operable but incorrect) existing, functioning code by re-defining dereferencing post facto. I can
scarcely see how
> this marketing-driven syntax change was worth it.
>
> JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

