
Subject: Re: Automatic Binsize Calculations
Posted by manodeep@gmail.com on Mon, 30 May 2011 18:26:25 GMT
View Forum Message <> Reply to Message

On May 30, 8:47 am, Craig Markwardt <craig.markwa...@gmail.com> wrote:
> On May 29, 12:42 pm, David Fanning <n...@idlcoyote.com> wrote:
>
>
>
>
>
>
>
>
>
>> Gianguido Cianci writes:
>>> Here's what I came up with, using sshist_2d.pro
>>> (http://tinyurl.com/3on7bzx) that automagically finds bin size:
>
>> I don't have a television, so while I listened to Djokovic
>> defeat Gasquet on the French Open Radio I was fooling
>> around using the 1D version of sshist to calculate
>> a default bin size for cgHistoplot. What I discovered
>> is that I get completely different results depending
>> on the data type of the input data!
>
>> I modified sshist a bit to get the bin size out of it
>> as a keyword:
>
>> ; Author: Shigenobu Hirose at JAMSTEC
>> ; based on original paper
>> ; Shimazaki and Shinomoto, Neural Computation 19, 1503-1527, 2007
>> ; http://toyoizumilab.brain.riken.jp/hideaki/res/histogram.htm l
>> ;
>> function sshist, data, x=x, cost=cost, nbin=nbin, binsize=binsize
>
>> COMPILE_OPT idl2
>
>> nbin_min = 2
>> nbin_max = 200
>
>> ntrial = nbin_max - nbin_min + 1
>
>> nbin = INDGEN(ntrial) + nbin_min
>
>> delta = FLTARR(ntrial)
>> cost = FLTARR(ntrial)
>

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5759
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=32490&goto=76406#msg_76406
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=76406
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> for n = 0, ntrial-1 do begin
>> delta[n] = (MAX(data) - MIN(data)) / (nbin[n] - 1)
>
>> k = HISTOGRAM(data, nbins=nbin[n])
>
>> kmean = MEAN(k)
>> kvari = MEAN((k - kmean)^2)
>> cost[n] = (2. * kmean - kvari) / delta[n]^2
>> endfor
>
>> n = (WHERE(cost eq MIN(cost)))[0]
>> k = HISTOGRAM(data, nbins=nbin[n], locations=x, reverse_indices=ri)
>
>> if arg_present(binsize) then binsize = delta[n]
>> return, k
>
>> end
>
>> But, look at this:
>
>> IDL> void = sshist(cgdemodata(21), binsize=bs) & print, bs
>> 9.00000
>> IDL> void = sshist(fix(cgdemodata(21)), binsize=bs) & print, bs
>> 1.00000
>> IDL> void = sshist(long(cgdemodata(21)), binsize=bs) & print, bs
>> 1.00000
>> IDL> void = sshist(float(cgdemodata(21)), binsize=bs) & print, bs
>> 1.33684
>
>> I have NO idea why this is occurring. :-(
>
> I think you have more than one thing going on, which is making things
> more confusing than otherwise.
>
> First, it looks like there is a serious bug in HISTOGRAM, which
> produces *negative* counts for byte data. Check this out:
> IDL> print, histogram(cgdemodata(21), nbins=nbin[n])
> 13591 43618 108702 55359 37621
> 15767
> 9343 -975994564
> Huh?? *Negative* 1 billion? This bug exists in IDL7, so it's been
> around for a while. I can't believe this hasn't showed up before!
>

It gets even more weird:

IDL> print,!version

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

{ x86_64 linux unix linux 8.0 Jun 18 2010 64 64}

IDL> xx = cgdemodata(21)
IDL> print,total(histogram(xx,nbin=16b,min=0b,max=255b),/pres)
 1798093803
IDL> print,total(histogram(cgdemodata(21),nbin=16b,min=0b,max=255 b),/
pres)
 -2145213021

IDL> print,total(histogram(cgdemodata(21),nbin=16b,min=0b,max=255 b),/
pres)
 -2145229853

And the last one output changes arbitrarily. So now the result is
dependent on whether a named variable is passed into histogram or not.
Now if I just change the min keyword for histogram, I get:

IDL> print,total(histogram(cgdemodata(21),nbin=16b,min=1b,max=255 b),/
pres)
 168048
IDL> print,total(histogram(xx,nbin=16b,min=1b,max=255b),/pres)
 168048
IDL> print,n_elements(xx)
 168048

So that looks good, i.e., no negative histogram counts. Histogram
(with min=0b) still produces negative counts - so the bug is intrinsic
to the way histogram is handling byte data. Setting some of the xx
values to 0b doesn't change the billion particle count in the final
bin. I guess what's happening is that the binwidth is > 1b, therefore
the last bin actually also contains numbers that are also between
[0b-15b].

IDL> print,total(histogram(xx,nbin=256,min=0b,max=255b),/pres)
 168048

Voila. The binsize now means no wrapping and there are no issues with
histogram. Note that you can not set nbins > 256, since binsize will
become 0b (and histogram will complain about illegal binsize).

Cheers,
Manodeep

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

