Subject: Re: looking for IDL streamlines help
Posted by agraps on Thu, 12 Dec 1996 08:00:00 GMT

View Forum Message <> Reply to Message

nolf@cscsuna3.larc.nasa.gov (Scott Nolf) writes:

> |I'm having trouble figuring out how to do streamlines in IDL. What I'm
> |looking for is something analogous to the STRMLN routine in NCAR
> graphics. It seems that the IDL routines PLOT_FIELD or VEL would
> be applicable, but | guess I'm not getting the keywords set correctly.

> Any help would be greatly appreciated.
> Scott Nolf

> p.s. - the data I'd like to streamline is global u and v wind components
> at a particular pressure level (ECMWEF data).

Several years ago | needed to plot global u and v wind components at a
particular pressure level of ECMWF data too..

| discovered in the process (meteorology is not really my field) that
meteorlogists often use 'streamlines' differently than how my vector
mechanics texts defined it.

There seem to be two ways "streamlines" are used in meteorology:

-streamlines calculated by integrating tangents to the vector field.
-streamlines calculated by finding the level sets of stream functions.

The first was the standard way from vector mechanics texts, and the
second way was new to me, but defined in fluid mechanics and
meteorology texts. The first way is also very s | o w. Because you
are integrating a 2D field point-by-point.

| wrote up some notes about how to do for both ways. The part that I'm
not satisfied with though, is that | got streamlines that didn't look
the same for both ways.

I'll append my notes about how to do this, but you can also retrieve
them at:

http://www.amara.com/ftpstuff/streamlinesl.txt
http://www.amara.com/ftpstuff/streamlines2.txt

And you can see output from the second way of my plotting u,v wind
vectors of ECMWF data at:

Page 1 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=736
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5162&goto=7680#msg_7680
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=7680
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

http://www.amara.com/past/viz.html

If you are interested in my IDL code to do this, let me know. It's not
in a very polished form and | don't give guarantees on it, especially
since that project was something on the side | did a long time ago
that | was just playing with. | believe that | took Dave Stern's VEL
routine and modified it a little for my purpose. And like | said, I'm
not satisfied that it's giving me the right answers.

Amara

Calculating Streamlines by Integrating Tangents to the Vector Field.
(method 1)

There seem to be two ways "streamlines” are used in meteorology:

-streamlines calculated by integrating tangents to the vector field.
-streamlines calculated by finding the level sets of stream functions.

My method below describes the first calculation. It is computationally
very intensive, even though | was using a simple Euler algorithm for
integration.

The idea is to integrate (X,y) using (dx, dy) until | reach the edges
of the grid (x_0, y_0) and (x_1, y_1) that | want to have
streamlines for. To integrate, | use the nearest vectors in a
weighted way- the weights for the current vector are inversely
proportional to their distance from the current vector.

0. Given a vector (x,y) (dx, dy)

1. Find nearest "n" vectors to any 1 vector (to calculate derivative
functions of the vector (x,y)).

For example if we use the 4 nearest vectors,
then let d1, d2, d3, d4 = nearby vector distances from current
vector.

2. Calculate the derivative functions gx(x_i, y_i) and gy(x_i, y_1i)
of (x,y) that will be used in the Euler integration using nearest
vectors.

I.e. our Euler integration scheme will be:
X {i+1} =x_i+gx(x_i,y_i)*h
y_{i+1} =y i+gy(x_i,y_i)*h

Page 2 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

where h is a step size that is some fraction smaller than
your grid.

Let wl, w2, w3, w4 = weights for nearby vectors, and
k = a proportionality constant which we must calculate.

Equation being solved for the weights is:
k/d1 + k/d2 + k/d3 +k/d4 =1

So we want: wl = k/d1, w2 = k/d2, w3 = k/d3, w4 = k/d4

l.e.:

k = (d1*d2*d3*d4) / (d2*d3*d4 + d1*d3*d4 + d1*d2*d4 + d1*d2*d3)
w1l = k/float(d1) & w2 = k/float(d2) & w3 = k/float(d3) &

w4 = k/float(d4)

Then calculate the gx and gy:

;X-component

d1x = nearest_gx(1) & d2x = nearest_gx(2)
d3x = nearest_gx(3) & d4x = nearest_gx(4)

gx = (wl*d1x + w2*d2x + w3*d3x + w4*d4x)/4.0

;y-component

dly = nearest_gy(1) & d2y = nearest_gy(2)
d3y = nearest_gy(3) & d4y = nearest_gy(4)

gy = (wl*dly + w2*d2y + w3*d3y + w4*d4y)/4.0

where:
"nearest_gx()" = nearby vector array of deriv function in x
direction

"nearest_gy()" = nearby vector array of deriv function in 'y
direction

3. Apply Eulers algorithm to integrate to next (forward or backward)
step in the streamline. In IDL, this part might look like:

case j of
0: begin
;forward
xstream(i,istep, j) = curr_x + gx * h
ystream(i,istep, j) = curr_y + gy * h
end

1: begin

Page 3 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;backward
xstream(i,istep, j) = curr_x-gx*h
ystream(i,istep, j) =curr_y -gy *h
end

endcase

curr_x = xstream(i,istep, j)

curr_y = ystream(i,istep, J)

;See if out of bounds to end integration
case 1 of
curr_x le xleft: out_of bounds =1 ;true
curr_x ge xright: out_of bounds =1
curr_y le ybottom: out_of bounds =1
curr_y ge ytop: out_of bounds =1
else: out_of bounds =0 ;false
endcase

Then "xstream" and "ystream" are the x and y components of the
streamline that you're looking for, given a wind vector and some
nearby vectors.

| really need a way to draw a picture to show how this works, but
| hope you can tell what's going on with the equations and text.

Calculating Streamlines by Finding the Level Sets of Stream Functions
(method 2)

There seem to be two ways "streamlines” are used in meteorology:

-streamlines calculated by integrating tangents to the vector field.
-streamlines calculated by finding the level sets of stream functions.

My method below describes the second calculation. This method assumes
mass conservation.

Say F is the stream function.
u = -dF/dy
v = dF/dx

(d's are partial derivatives)

Page 4 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

From these equations:
d"2 F/dx"2 + d"2F/dy"2 = d"2 F
= dv/dx - du/dy = psi.

where psi = the vertical component of vorticity (which equals the
circulation about a loop in the limit where the area approaches 0)

The relationship between circulation and vorticity for an area element
in the horizontal plane looks sort of like:

(u + (du/dy)*del_y)

| |

o

| | (v + (dv/dx)*del_x)
| |

I |

I

v velocity compoent up *
u velocity component right ->

Stokes theorem states that the circulation about any closed loop is
equal to the integral of the normal compoent of the vorticity over the
area enclosed by the loop. Hence, for a finite area, the circulation
divided by the area gives the average normal compoent of vorticity the
region.

A streamline is a continuous line through the fluid such that it has
the direction of the velocity at every point throughout its length.

(See Holton: _An Introduction to Dynamic Meteorology _ pg. 66.,
also Streeter: _Fluid Dynamics_)

| fill in a grid of streamfunctions by using the horizontal and
vertical components of the (wind) velocity. Then | contour the stream
function to get level sets -> which gives me my streamlines.

Step One. Fill in a grid of points with your stream function.

- Define min/max x and y for your grid, as well as delta_x, delta_y.

Page 5 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

let N = length of square grid

- Initialize F(N,N)

- Set F(0,0) = 0 (a constant)

- Calculate "up" to fill in the left side of the grid

F(0,1) = C + Integral(v dx) - Integral(u dy) = -Integral(u dy)
(these integrals are closed integrals)

Using Trapezoidal Rule: Int_0%h f(x)dx = 1/2(f(0)+f(h))*h

-Integral(u dy) = -1/2(u(0,0) + u(0,1)) * delta_y for value
of stream function 1st step "up"

or more generally:
F(O,n+1) =-1/2 (u(0,n) + u(0,n+1)) *delta_y + F(0,n)

n are the individual boxes in your grid. You may want do interpolation,
say by using nearest neighbors, to fill in the grid more.

Repeat for position y_{n+1} to fill in the left side of the grid.
- Calculate "right" to fill in the bottom side of the grid

An identical calculation gives you:

F(n+1,0) = -1/2 (v(n,0) + v(n+1,0)) *delta_x + F(n,0)
Repeat for position y_{n+1} to fill in the left side of the grid.

Step 2. Now that we have F(*,0), do the same for F(*,1), F(*,2)
etc. and finally CONTOUR F(*,*) by using X,y as the grid.

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

kkkkkkkkkhkhkhkhkhkhkhkkkhkkkhhhhhkhkhkhhhkkkhkhhhhkhkhkhhhhhkkkhhhhhhkhkhkhkkk kkkhhkhhhkhkhkhkx

Amara Graps email: agraps@netcom.com
Computational Physics vita: finger agraps@best.com
Multiplex Answers URL: http://www.amara.com/

kkkkkkkkkhkkhkkhkkkkkkkkkhkhhhkhkkkkkkkkhkhhhhkkhkhkkkkkkkhhhhkhkhkhkhkkk kkkkkkkhkkkkkx

Page 7 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

