Subject: Re: TOTAL gives totally different result on identical array
Posted by Liam Gumley on Fri, 08 Jul 2011 14:37:32 GMT

View Forum Message <> Reply to Message

[stuff deleted]

The online documentation for the TOTAL function in IDL warns that this
may happen:

---quote begins---

You should be aware that when summing a large number of values, the
result from TOTAL can depend heavily upon the order in which the
numbers are added. Since the thread pool will add values in a

different order, you may obtain a different — but equally correct —
result than that obtained using the standard non-threaded
implementation. This effect occurs because TOTAL uses floating point
arithmetic, and the mantissa of a floating point value has a fixed
number of significant digits. The effect is especially obvious when

using single precision arithmetic, but can also affect double

precision computations. Such differences do not mean that the sums are
incorrect. Rather, they mean that they are equal within the ability of

the floating point representation used to represent them.

---end quote---

In a previous posting, someone mentioned the Kahan algorithm for
computing a numerically stable summation:

http://en.wikipedia.org/wiki/Kahan_summation_algorithm
A translation to IDL looks like this:

function kahansum, input

sum = 0.0

c=0.0

fori = 0L, n_elements(input) - 1 do begin
y = input[i] - ¢
t=sum+y
c=(t-sum)-y
sum =t

endfor

return, sum

end

The IDL documentation for TOTAL includes the following example for
demonstrating the impact of array ordering on summation:

IDL> vec = FINDGEN(100000)
IDL> PRINT, TOTAL(vec) - TOTAL(REVERSE(vec))

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=796
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=32713&goto=76899#msg_76899
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=76899
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

-87552.0

However the Kahan summation, while considerably slower, does the
summation with much less error:

IDL> PRINT, kahansum(vec) - kahansum(reverse(vec))
0.00000

Cheers,

Liam.

Practical IDL Programming
http://www.gumley.com/

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

