
Subject: Re: Another "IDL way to do this" question
Posted by Fabzou on Wed, 09 Nov 2011 08:58:16 GMT
View Forum Message <> Reply to Message

Wow Jeremy, you produced a nice peace of code here, I will try to
decipher it!

The problem is that in my case, the abscissae values X are of the same
dimension as V. In the third dimension case, for example, each column
[Xn,Yn] has different pressure values, which does not work with your
assumption that X must have the same number of elements as the dimension
3 in V.

Your algorithm is indeed much faster (couldn't check the results, though):

varin = FLTARR(200,200,27,24), interpolation on DIM3:

Mine: 19.391076 sec
JB : 0.43421888 sec

Do you think I could adapt it?

Thanks a lot,

Fab

On 11/08/2011 10:19 PM, Jeremy Bailin wrote:
> ;+
> ; NAME:
> ; INTERPOL_D
> ;
> ; PURPOSE:
> ; Perform linear interpolation on an irregular grid, a la INTERPOL(V,
> X, U), but only performing
> ; the interpolation over one particular dimension.
> ;
> ; CATEGORY:
> ; Math
> ;
> ; CALLING SEQUENCE:
> ; Result = INTERPOL_D(V, X, U, D)
> ;
> ; INPUTS:
> ; V: Input array.
> ;
> ; X: Abscissae values for dimension D of array V. Must have the
> same number
> ; of elements as the appropriate dimension of V.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7244
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33246&goto=78349#msg_78349
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78349
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ;
> ; U: Abscissae values for the result. The result will have the same
> number of
> ; elements as U in dimension D.
> ;
> ; D: Dimension over which to interpolate, starting at 1.
> ;
> ; OUTPUTS:
> ; INTERPOL_D returns an array with the same dimensions as V except
> that dimension D
> ; has N_ELEMENTS(U) elements in dimension D.
> ;
> ; WARNINGS:
> ; Untested. Use at your own risk.
> ;
> ; MODIFICATION HISTORY:
> ; Written by: Jeremy Bailin, 8 November 2011
> ;
> ;-
> function interpol_d, v, x, u, d
>
> vsize = size(v,/dimen)
> nvdimen = n_elements(vsize)
> nx = n_elements(x)
> nu = n_elements(u)
> if n_elements(d) ne 1 then message, 'D must have only one element.' else
> d0=d[0]-1 ; scalarize it and zero-index
>
> ; check that vsize contains a dimension d
> if d0 ge nvdimen then message, 'V must contain dimension D.'
> ; check that X has the right number of elements
> if nx ne vsize[d0] then message, 'X must have the same number of
> elements as dimension D of array V.'
>
> ; where do U (output) values lie w/r/t X (input) values?
> u_in_x_low = value_locate(x, u)
> ; fractional distance between u_in_x_low and u_in_x_low+1
> xfrac = (u-x[u_in_x_low])/(x[u_in_x_low+1]-x[u_in_x_low])
> ; reform V so that dimension D is in the first dimension and all other
> dimensions are in a single
> ; dimension afterward
> all_but_d = where(indgen(nvdimen) ne d0)
> n_allbutd = product(/int, vsize[all_but_d])
> v = reform(transpose(temporary(v), [d0,all_but_d]), [nx, n_allbutd])
> ; do the linear interpolation
> xfrac = rebin(xfrac, [nu, n_allbutd], /sample)
> output = v[u_in_x_low,*]*(1.-xfrac) + v[u_in_x_low+1,*]*xfrac
> ; and reform back so that the interpolated dimension is where it should be

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> resorted_dimenlist = sort([d0,all_but_d])
> output = transpose(reform(temporary(output), [nu, vsize[all_but_d]]),
> resorted_dimenlist)
>
> ; reform v back to original dimensions so that if it's used outside we
> haven't clobbered it
> v = reform(v, vsize)
>
> return, output
>
> end

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

