Subject: Re: Vector output of idlgrpolygon models
Posted by D D on Tue, 08 Nov 2011 19:58:04 GMT

View Forum Message <> Reply to Message

On Nov 8, 5:13 pm, Karl <Karl.W.Schu...@gmail.com> wrote:

> You might try looking at the REJECT property in IDLgrPolygon. If your surfaces are defined
correctly so that the normals are correct, REJECT can be set to prevent drawing the polygons that
face away from the viewer. This might reduce the number of unwanted polygons you are
dealing with.

>

> Also might look at the VECT_SORTING keyword in IDLgrClipBoard::Draw(). Graphics
hardware uses Z-buffers to take care of the hidden surface removal problem. The clipboard
doesn't have such hardware and does coarse-grained sorting of the objects based on their depth
instead. | can't remember if it uses the average Z of the entire IDLgrPolygon object, or the
average Z of each triangle making up the polygon. If the latter is true, then that level of
resolution may be good enough to sort out your surfaces. There will likely be problems where
the toroids intersect, so look carefully there. The clipboard object won't split up intersecting
triangles and draw just the visible pieces.

>

> A more robust solution would be to use a BSP tree to sort them out and take care of splitting
intersecting faces, but that is a lot of work.

| activate hardware rendering by default on my draw widgets, IDL then
sets them to software if the machine doesn't have suitable hardware.
Indeed | would have thought that the hardware to file comparison would
be the most likely place for a difference to occur.

As most of my surfaces aren't closed setting the REJECT keyword to
anything other than 0 means | lose half of my surface. Additionally
many of the "hidden" polygons will have normals pointing towards (or
away from) the camera. It's a shame because at first | thought REJECT
was what | was after. It is an option if | enforce a fixed viewpoint

but this is not great.

VECT_SORTING again looks useful but only alters the order items are
drawn, not if they are drawn.

Currently | draw my surfaces as a single polygon object, | have tested
splitting each surface into the individual polygons and redrawing.
This makes the visualisation and manipulation a fair bit slower but
still doesn't allow automated hidden object removal with vect_sorting
or reject.

One (probably idiotic) thought i've just had is if it's possible for a
user to click in the window to select a polygon (i.e. IDL can take an
x-y position and tell you what you've clicked on) then you could
technically click every polygon you can see and mark it, then once
you've covered the screen toggle all the unmarked polygons HIDE

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7445
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33244&goto=78357#msg_78357
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78357
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

property. How you would go about this in practice i'm not sure,
moreover I'd guess this is likely to take a considerable amount of
time if one were to scan over the full window at the smallest
resolution. I'm sure some optimisation could be made but this still
sounds like it's probably not a good way to go (if it's even
possible).

Any other suggestions would be much appreciated but | think it looks
like there's no simple way to achieve this. It will either involve

writing a routine, putting up with large files or invoking an external
tool (i'm trying hidden object removal with CorelDraw at the moment
but it doesn't like the number of objects | think).

Thanks,
David

(Going slightly off topic [well off IDL anyway] : Searching for a
solution to this | came across the C library GL2PS which apparently
does this hidden object removal and is a routine for creating
Postscript files from opengl commands. As | have little knowledge of
opengl and no knowledge of C i've not got anywhere with it but it
would certainly could form a nice output object! There is optional
support for it in Paraview [which can read vrml] so this is one
possible route.)

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

