Subject: Re: Search single column of array - removing nasty loop
Posted by rjp23 on Thu, 01 Dec 2011 12:10:12 GMT

View Forum Message <> Reply to Message

On Dec 1, 12:00 pm, Yngvar Larsen <larsen.yng...@gmail.com> wrote:
> On Dec 1, 11:37 am, Rob <rj...@le.ac.uk> wrote:
>

V VVVYVVYVYV

>> On Nov 30, 8:15 pm, Yngvar Larsen <larsen.yng...@gmail.com> wrote:
>

>>> On Nov 29, 6:53 pm, Heinz Stege <public.215....@arcor.de> wrote:

>

>>>> Hi Rob,

>

>>>> no loop necessary:

>

>>>> array=(randomu(seed,2,6,360,42)-.1)>0. ; sample array

>>>> array=reform(array,n_elements(array)/42,42,/overwrite)

>>>> ji=where(min(array,dim=2) eq 0.,count)

>>>> jf count ge 1 then arrayf[ii,*]=0.

>>>> array=reform(array,2,6,360,42,/overwrite)

>

>>> Hm. The /OVERWRITE keyword to REFORM was new to me. Thanks!
>

>>> Silly me. | have somehow always imagined that the compiler was smart
>>> enough to do this (i.e. not copy any data, only alter the internal IDL
>>> descriptor of the ARRAY variable) automatically when input and output
>>> to REFORM is the same variable. But a bit of profiling shows this is
>>> not at all the case. This will be _very useful many places in my

>>> operational code...

>

>>> A small comment to the code above: "where(min(array,dim=2) eq 0.)"
>>> obviously only works if array contains only non-negative data. If not,
>>> "where(total(array eq 0, 2) gt 0)" will do the trick also for floating

>>> point data containing negative numbers, with more or less the same
>>> performance.

>

>>> -

>>> Yngvar

>

>> Thanks, that explains why a few results were coming out slightly

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7112
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33321&goto=78510#msg_78510
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78510
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

V
\Y

VVVVVVVVVVVVVVVYVYVYVYV

differently as there are a few negative values.
Also, the code fails when the final column only has 1 element in it.

IDL> help, array

ARRAY DOUBLE = Array[4320, 1]

IDL> help, total(array eq 0, 2)

% TOTAL: For input argument <BYTE Array[4320]>, Dimension must be
1.

If the final column has only 1 element, the operation is not necessary
at all since all elements are already 0 :)

IDL sometimes behaves rather idiotic with singleton dimensions:

IDL> help, fltarr(4320, 1)
<Expression> FLOAT = Array[4320]

This is a problem when arrays are expected to be 2D, and suddenly are
automatically 1D. You can avoid it by adding an explicit REFORM
statement at the appropriate place in the code:

;; Force ARRAY to be 2D always
if (size(array, /n_dimensions) eq 1) then $
array = reform(array, n_elements(array), 1, /overwrite)

Yngvar

I'm not sure if that's the solution as the array was already 2D:

>>
>>

IDL> help, array
ARRAY DOUBLE = Array[4320, 1]

Pag

e 2 of 2 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

