Subject: Re: faster convol on local subsets?
Posted by Yngvar Larsen on Tue, 06 Dec 2011 14:23:07 GMT
View Forum Message <> Reply to Message

On Dec 6, 12:17 am, Andre <note....@gmail.com> wrote:

- > I did not yet find time to check the implementation that Yngvar
- > suggested but tried http://idlastro.gsfc.nasa.gov/ftp/pro/image/convolve.pro
- > which also implements convolution in the Fourier domain. Still its
- > slower than the native IDL convolution.

This is not my experience. I typically got a speedup by a factor of 10-100 for some applications where the kernels are quite large.

- > According to a comment in
- > their code IDL 8.1 has a CONVOL_FFT() which seems worth a further try
- > after I got the update.

I didn't know that. Thanks for the tip!

- > Last I also tried to convolve at each position only with desired
- > kernel. The code looks more or less like this

```
    m=half_kernel_size
    nc= number of columns of the input
    nr = number of rows of the input
    for i=m, nc - m-1 do begin
```

> for j=m, nr - m-1 do begin
> patch=img[i-m:i+m, j-m:j+m]

> patch=img[i-m.i+m, j-m.j+m] > kernel=kernel_store[*,*, (max_loc[i,j])]

temp = convol(patch, kernel])

response[i,i] = temp[m, m]

> response[i,j] = temp[m, n > endfor

/ Cildioi

> endfor

You are calculating the 2D convolution of PATCH and KERNEL, and then picking out only one element. You could try to calculate this element by hand, which should be a linear operation.

What is the typical dimension of KERNEL_STORE?

Yngvar