Subject: Re: faster convol on local subsets?
Posted by Andre on Mon, 05 Dec 2011 23:17:48 GMT

View Forum Message <> Reply to Message

On Dec 5, 11:54 am, Yngvar Larsen <larsen.yng...@gmail.com> wrote:

> On Dec 5, 1:37 am, Andre <note....@gmail.com> wrote:

>

>> Hello experts,

>

>> Maybe somebody has an easy solution for this?

>> | have a 2D array (img) and want the filter response from kernels that vary according to the
image position. In a second array (loc, same dimensions as img) | have the information which
kernel should be used at each pixel. My current approach is to first convolve the full image with
the j-th kernel and take the response only at the positions with the current j indexed in the loc

array:
>

>> for j=0, n do begin

>> kernel=kernel_store[*,*,]]

>> response_temp = convol(img, kernel, /edge_zero, /INAN)

>> index=where(loc eq j)

>> if (index[0] gt -1)then response[index]=response_temp[index]
>> endfor

>

>> | works fine, but it is relatively slow and | wonder if there is a smarter (faster) to apply only the
convolutions that are really needed?
>

>> Thanks in advance for any help!

Yes, it seems like IDL does not implement 2D convolution very

efficiently. | found out that a straight forward implementation by

zeropadding to a power-of-2 length followed by multiplication in the

FFT domain is much faster unless the convolution kernel is very small.
Something like this (when /EDGE_ZERO and /NORMALIZE is set, some more
work for other EDGE_* keywords):

sizeA = size(array, /dimensions)
sizeB = size(kernel, /dimensions)

diml = sizeA[0] + sizeB[0] - 1
dim2 = sizeA[1] + sizeB[1] - 1

sl = 2L”ceil(alog(dim1)/alog(2))
s2 = 2L ceil(alog(dim2)/alog(2))

A = dcomplexarr(sl, s2)
B = dcomplexarr(sl, s2)

VVVVVVVVVVVVVVVVYVYVYVYVYV

A[0,0] = array

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7359
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33348&goto=78621#msg_78621
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78621
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> B[0,0] = kernel

>

> convol = fft(fft(A)*fft(B), /inverse)*s1*s2

> convol = convol[sizeB[0]/2:sizeB[0]/2+sizeA[0]-1, $
> sizeB[1]/2:sizeB[1]/2+sizeA[1]-1]

>

> convol = double(convol)/total(abs(kernel))

>

-

> Yngvar

Thanks for all the suggestions so far.

| tried it with the changes that Jeremy suggested but for some reason

it runs even a little bit slower than the original version.

On a 2300x2900 array the original loop runs for 322.46600s while with
REVERSEINDICES it needs 394.51800s (even when precomputing the kernel
outside the loop). My guess is that it takes more time because calling

the routine in each loop is expensive (http://ross.iasfbo.inaf.it/IDL/
Robishaw/idIfast.html).

| did not yet find time to check the implementation that Yngvar

suggested but tried http://idlastro.gsfc.nasa.gov/ftp/pro/image/convolve.pro
which also implements convolution in the Fourier domain. Still its

slower than the native IDL convolution. According to a comment in

their code IDL 8.1 has a CONVOL_FFT() which seems worth a further try
after | got the update.

Last | also tried to convolve at each position only with desired
kernel. The code looks more or less like this

m=half_kernel_size
nc= number of columns of the input
nr = number of rows of the input

for i=m, nc - m-1 do begin
for j=m, nr - m-1 do begin
patch=img[i-m:i+m, j-m:j+m]
kernel=kernel_store[*,*, (max_loc]i,j])]
temp = convol(patch, kernel])
response(i,j] = temp[m, m]
endfor
endfor

As expected the convolution runs much quicker than on the full image
but the large number of loops eats up all that speed gains and in the
end its even 409.56500s for the same array as before.

...to be continued...

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

