
Subject: Re: Search single column of array - removing nasty loop
Posted by Yngvar Larsen on Thu, 01 Dec 2011 12:44:42 GMT
View Forum Message <> Reply to Message

On Dec 1, 1:10 pm, Rob <rj...@le.ac.uk> wrote:
> On Dec 1, 12:00 pm, Yngvar Larsen <larsen.yng...@gmail.com> wrote:
>
>
>
>
>
>
>
>
>
>> On Dec 1, 11:37 am, Rob <rj...@le.ac.uk> wrote:
>
>>> On Nov 30, 8:15 pm, Yngvar Larsen <larsen.yng...@gmail.com> wrote:
>
>>>> On Nov 29, 6:53 pm, Heinz Stege <public.215....@arcor.de> wrote:
>
>>>> > Hi Rob,
>
>>>> > no loop necessary:
>
>>>> > array=(randomu(seed,2,6,360,42)-.1)>0. ; sample array
>>>> > array=reform(array,n_elements(array)/42,42,/overwrite)
>>>> > ii=where(min(array,dim=2) eq 0.,count)
>>>> > if count ge 1 then array[ii,*]=0.
>>>> > array=reform(array,2,6,360,42,/overwrite)
>
>>>> Hm. The /OVERWRITE keyword to REFORM was new to me. Thanks!
>
>>>> Silly me. I have somehow always imagined that the compiler was smart
>>>> enough to do this (i.e. not copy any data, only alter the internal IDL
>>>> descriptor of the ARRAY variable) automatically when input and output
>>>> to REFORM is the same variable. But a bit of profiling shows this is
>>>> not at all the case. This will be _very_ useful many places in my
>>>> operational code...
>
>>>> A small comment to the code above: "where(min(array,dim=2) eq 0.)"
>>>> obviously only works if array contains only non-negative data. If not,
>>>> "where(total(array eq 0, 2) gt 0)" will do the trick also for floating
>>>> point data containing negative numbers, with more or less the same
>>>> performance.
>
>>>> --
>>>> Yngvar

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33321&goto=78658#msg_78658
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78658
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>> Thanks, that explains why a few results were coming out slightly
>>> differently as there are a few negative values.
>
>>> Also, the code fails when the final column only has 1 element in it.
>
>>> IDL> help, array
>>> ARRAY DOUBLE = Array[4320, 1]
>>> IDL> help, total(array eq 0, 2)
>>> % TOTAL: For input argument <BYTE Array[4320]>, Dimension must be
>>> 1.
>
>> If the final column has only 1 element, the operation is not necessary
>> at all since all elements are already 0 :)
>
>> IDL sometimes behaves rather idiotic with singleton dimensions:
>
>> IDL> help, fltarr(4320, 1)
>> <Expression> FLOAT = Array[4320]
>
>> This is a problem when arrays are expected to be 2D, and suddenly are
>> automatically 1D. You can avoid it by adding an explicit REFORM
>> statement at the appropriate place in the code:
>
>> ;; Force ARRAY to be 2D always
>> if (size(array, /n_dimensions) eq 1) then $
>> array = reform(array, n_elements(array), 1, /overwrite)
>
>> --
>> Yngvar
>
> I'm not sure if that's the solution as the array was already 2D:
>
>>> IDL> help, array
>>> ARRAY DOUBLE = Array[4320, 1]

Right. I suspected something like that. That's why I qualified it with
"...at the appropriate place in the code" :)

Your problem is this rather strange behavior:

IDL> help, array
ARRAY FLOAT = Array[4320, 1]
IDL> help, array eq 0
<Expression> BYTE = Array[4320]

So the solution is:

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;;...
tmp = array eq 0
;; Force TMP to be 2D always
if (size(tmp, /n_dimensions) eq 1) then $
 tmp = reform(tmp, n_elements(tmp), 1, /overwrite)
ii = where(total(tmp, 2) gt 0, count)
;;...

--
Yngvar

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

