Subject: Re: Cumulative max() in *arbitrary* dimension?
Posted by JDS on Tue, 28 Feb 2012 00:09:38 GMT

View Forum Message <> Reply to Message

On Thursday, February 23, 2012 3:38:35 PM UTC-5, Gianguido Cianci wrote:
Hi all,

| would like to write a generic version of the following, which is for a 3d movie:

>
>

>

>

> res=movie
> s=size(res, /dim)

> FORi=1, s[2]-1 DO BEGIN

> res[*, *, i] = max(dim = 3, res[*, *, 0:i])

> ENDFOR

Suppose you'd like to create a generic routine (any generic routine, ala
HIST_ND, SORT_ND, etc.) which operates along any arbitrary dimension of
multi-dimensional arrays. In this case, the *first* thing you'll need

to do is let go of IDL's syntactic indexing conveniences ([*,*,i] and

the like). These are simply IDL shorthand for creating index arrays,

which is very useful, but also very limiting. Instead, you'll want to

create your own index arrays, which is vastly more flexible, and not at

all difficult once you get the hang of it.

Another useful rule of thumb: modifying arrays in place is somewhat more
efficient if, on the left-hand-side, you specify a single index of the
array, and have the right hand side simply fill in memory order. l.e.

aloff]=big_array
is faster than
aloff.off+n_elements(big_array)-1]=big_array

(and neater looking too). This obviously *only* works when the array
you are filling is intended to be dumped in memory order, straight in.

What if your problem isn't so accommodating? What if, for example, you
want to operate on an intermediate dimension of an array? The final and
quite important trick in producing dimension-agnostic code is to force
the input into submission by *rearranging* arrays to place the dimension
of interest *last*. This means individuals "units" of comparison

(planes of the 3D cube, in the example here) are accessible (and
modifiable) *directly in memory order*. TRANSPOSE is the tool for this.
This dramatically simplifies things. Also, in my experience, it's

almost always faster to transpose the array, work along the now-final
dimension of interest doing your possibly rather painful set of
operations, and then transpose back, rather than employ an algorithm

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6762
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33647&goto=79437#msg_79437
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=79437
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

that dances hither and yon plucking values from all around the array.

After that realization, it's a straightforward matter of converting

between the linear indices of a blob of memory (which is all your fancy
IDL arrays really are) and multi-dimensional array indices (which are a
useful but arbitrary bookeeping construct maintained by the language).
Since you now have your giant array properly ordered, you can simply
operate on sequential blobs of data, which may represent some sub-array
unit of arbitrary number of dimensions (e.g. two, for a plane).

In the given solution, you are overwriting the array, one plane at a

time. This isn't a problem per se, but your version creates unnecessary
work. This is because you already know the maximum up to the last index
being considered. That is, the cumulative max at index 'i' is nothing

more than the max between the prior cumulative max at index 'i-1' and

the value(s) at index 'i'. No need to start all over at the beginning.

Here's a generic routine which puts all of these concepts together (and,
doesn't even use MAX):

http://tir.astro.utoledo.edu/idl/max_cumulative.pro

Yes, it has a FOR loop, but notice that it only loops over the length of
the dimension of interest. At each step of the loop, sub-arrays the

size of the product of *all the rest* of the dimensions are operated on,
which could represent rather substantial chunks for large
multi-dimensional arrays. Thus, in reasonable cases, the looping
overhead penalty is unimportant. In fact, | was very surprised to find
that, when working along the final dimension of large arrays (of a few
hundred million elements), MAX_CUMULATIVE is ~2x faster than its
MAX(DIMENSION=) analog, which produces a subset of the information!

JD

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

