Subject: Re: Cumulative max() in *arbitrary* dimension?
Posted by JDS on Fri, 09 Mar 2012 16:58:44 GMT

View Forum Message <> Reply to Message

On Thursday, March 8, 2012 7:17:29 PM UTC-5, Heinz Stege wrote:
> On Thu, 8 Mar 2012 10:33:39 -0800 (PST), JDS wrote:
>
>> |'ve since tuned this up a bit more, saving 1/2 of the index computation
>> during each step of the loop by incrementing a running index array. It's
>> now (rather remarkably) >5x faster than MAX(DIMENSION=3) for me with
>> large 3D arrays. And of course it gives all the intermediate cumulative
>> max values.
>>
The loop can be tuned up even more. Replacing the array of indices by
two scalars for the subscript range makes the loop faster and also
saves memory. | replaced the following 2 lines of your code
inds=lindgen(off)
for i=1,s[d]-1 do a[i*off]=a[inds]>a[(inds+=0ff)]
by the following 3 lines:
i1=0
i2=0ff-1
for i=1,s[d]-1 do a[i*off]=a[il:i2]>a[(i1+=0ff):(i2+=0ff)]

In my examples max_cumulative is about 2 to 3 times faster than
before:

~2.5 times for a 60x400x3000 byte array

~3.1 times for a 60x400x300 byte array

~2.1 times for a 60x40x3000 byte array

VVVVVVVVYVVYVVYVYVYVYVYV

Heinz

Hey, Heinz... very cool. This flies in the face of the general notion that "having IDL compute index
arrays in loops is wasteful.” This is likely because you are required to update the index set during
each iteration, so you may as well let IDL do this internally. In other typical cases, you are asking
IDL to repeat the calculation of an identical index loop that you can simply pre-cache for a large
savings.

| replaced yours instead with the rather similar:
for i=1,s[d]-1 do a[i*off]=a][(i-1)*off:i*off-1]>a[i*off:(i+1)*off-1]

and got about 2.5x speedup for the final dimension. For non-final dimensions, the speedup is
much less, since TRANSPOSE imposes a reasonably large overhead. Since this challenged my
first "rule of thumb", | decided to check the next one: that TRANSPOSE and then in-order
operation saves time over indexing out of memory order. That one holds for non-final dimensions,
by at least a factor of 2.

BTW, it's now *15x* faster than MAX(DIMENSION=3), for the reasons Lajos mentions.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6762
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33647&goto=79588#msg_79588
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=79588
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Thanks for your thoughts.

JD

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

